Step |
Hyp |
Ref |
Expression |
1 |
|
ringabl |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
2 3 4 5
|
isring |
|
7 |
|
simpl |
|
8 |
|
mndsgrp |
Could not format ( ( mulGrp ` R ) e. Mnd -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( ( mulGrp ` R ) e. Mnd -> ( mulGrp ` R ) e. Smgrp ) with typecode |- |
9 |
8
|
3ad2ant2 |
Could not format ( ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) -> ( mulGrp ` R ) e. Smgrp ) with typecode |- |
10 |
9
|
adantl |
Could not format ( ( R e. Abel /\ ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( ( R e. Abel /\ ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) -> ( mulGrp ` R ) e. Smgrp ) with typecode |- |
11 |
|
simpr3 |
|
12 |
2 3 4 5
|
isrng |
Could not format ( R e. Rng <-> ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) : No typesetting found for |- ( R e. Rng <-> ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) with typecode |- |
13 |
7 10 11 12
|
syl3anbrc |
|
14 |
13
|
ex |
|
15 |
6 14
|
syl5bi |
|
16 |
1 15
|
mpcom |
|