Metamath Proof Explorer


Theorem ringrng

Description: A unital ring is a (non-unital) ring. (Contributed by AV, 6-Jan-2020)

Ref Expression
Assertion ringrng R Ring R Rng

Proof

Step Hyp Ref Expression
1 ringabl R Ring R Abel
2 eqid Base R = Base R
3 eqid mulGrp R = mulGrp R
4 eqid + R = + R
5 eqid R = R
6 2 3 4 5 isring R Ring R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
7 simpl R Abel R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z R Abel
8 mndsgrp Could not format ( ( mulGrp ` R ) e. Mnd -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( ( mulGrp ` R ) e. Mnd -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
9 8 3ad2ant2 Could not format ( ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
10 9 adantl Could not format ( ( R e. Abel /\ ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( ( R e. Abel /\ ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
11 simpr3 R Abel R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
12 2 3 4 5 isrng Could not format ( R e. Rng <-> ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) : No typesetting found for |- ( R e. Rng <-> ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) with typecode |-
13 7 10 11 12 syl3anbrc R Abel R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z R Rng
14 13 ex R Abel R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z R Rng
15 6 14 syl5bi R Abel R Ring R Rng
16 1 15 mpcom R Ring R Rng