| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ringabl | 
							⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Abel )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 )  | 
						
						
							| 6 | 
							
								2 3 4 5
							 | 
							isring | 
							⊢ ( 𝑅  ∈  Ring  ↔  ( 𝑅  ∈  Grp  ∧  ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑅  ∈  Abel  ∧  ( 𝑅  ∈  Grp  ∧  ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) )  →  𝑅  ∈  Abel )  | 
						
						
							| 8 | 
							
								
							 | 
							mndsgrp | 
							⊢ ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  →  ( mulGrp ‘ 𝑅 )  ∈  Smgrp )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑅  ∈  Grp  ∧  ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) )  →  ( mulGrp ‘ 𝑅 )  ∈  Smgrp )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( 𝑅  ∈  Abel  ∧  ( 𝑅  ∈  Grp  ∧  ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) )  →  ( mulGrp ‘ 𝑅 )  ∈  Smgrp )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝑅  ∈  Abel  ∧  ( 𝑅  ∈  Grp  ∧  ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) )  | 
						
						
							| 12 | 
							
								2 3 4 5
							 | 
							isrng | 
							⊢ ( 𝑅  ∈  Rng  ↔  ( 𝑅  ∈  Abel  ∧  ( mulGrp ‘ 𝑅 )  ∈  Smgrp  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) )  | 
						
						
							| 13 | 
							
								7 10 11 12
							 | 
							syl3anbrc | 
							⊢ ( ( 𝑅  ∈  Abel  ∧  ( 𝑅  ∈  Grp  ∧  ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) )  →  𝑅  ∈  Rng )  | 
						
						
							| 14 | 
							
								13
							 | 
							ex | 
							⊢ ( 𝑅  ∈  Abel  →  ( ( 𝑅  ∈  Grp  ∧  ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) )  →  𝑅  ∈  Rng ) )  | 
						
						
							| 15 | 
							
								6 14
							 | 
							biimtrid | 
							⊢ ( 𝑅  ∈  Abel  →  ( 𝑅  ∈  Ring  →  𝑅  ∈  Rng ) )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							mpcom | 
							⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Rng )  |