Step |
Hyp |
Ref |
Expression |
1 |
|
isrng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isrng.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
3 |
|
isrng.p |
⊢ + = ( +g ‘ 𝑅 ) |
4 |
|
isrng.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) |
6 |
5 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = 𝐺 ) |
7 |
6
|
eleq1d |
⊢ ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ∈ Smgrp ↔ 𝐺 ∈ Smgrp ) ) |
8 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V ) |
9 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
10 |
9 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
11 |
|
fvexd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) ∈ V ) |
12 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) |
14 |
13 3
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) = + ) |
15 |
|
fvexd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( .r ‘ 𝑟 ) ∈ V ) |
16 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
19 |
18 4
|
eqtr4di |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( .r ‘ 𝑟 ) = · ) |
20 |
|
simpllr |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑏 = 𝐵 ) |
21 |
|
simpr |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑡 = · ) |
22 |
|
eqidd |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑥 = 𝑥 ) |
23 |
|
oveq |
⊢ ( 𝑝 = + → ( 𝑦 𝑝 𝑧 ) = ( 𝑦 + 𝑧 ) ) |
24 |
23
|
ad2antlr |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑦 𝑝 𝑧 ) = ( 𝑦 + 𝑧 ) ) |
25 |
21 22 24
|
oveq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → 𝑝 = + ) |
27 |
26
|
adantr |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑝 = + ) |
28 |
|
oveq |
⊢ ( 𝑡 = · → ( 𝑥 𝑡 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
29 |
28
|
adantl |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑡 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
30 |
|
oveq |
⊢ ( 𝑡 = · → ( 𝑥 𝑡 𝑧 ) = ( 𝑥 · 𝑧 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑡 𝑧 ) = ( 𝑥 · 𝑧 ) ) |
32 |
27 29 31
|
oveq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
33 |
25 32
|
eqeq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ↔ ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
34 |
|
oveq |
⊢ ( 𝑝 = + → ( 𝑥 𝑝 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑝 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
36 |
|
eqidd |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑧 = 𝑧 ) |
37 |
21 35 36
|
oveq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) |
38 |
|
oveq |
⊢ ( 𝑡 = · → ( 𝑦 𝑡 𝑧 ) = ( 𝑦 · 𝑧 ) ) |
39 |
38
|
adantl |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑦 𝑡 𝑧 ) = ( 𝑦 · 𝑧 ) ) |
40 |
27 31 39
|
oveq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
41 |
37 40
|
eqeq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ↔ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
42 |
33 41
|
anbi12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
43 |
20 42
|
raleqbidv |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
44 |
20 43
|
raleqbidv |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
45 |
20 44
|
raleqbidv |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
46 |
15 19 45
|
sbcied2 |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
47 |
11 14 46
|
sbcied2 |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
48 |
8 10 47
|
sbcied2 |
⊢ ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
49 |
7 48
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( mulGrp ‘ 𝑟 ) ∈ Smgrp ∧ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) ↔ ( 𝐺 ∈ Smgrp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) ) |
50 |
|
df-rng0 |
⊢ Rng = { 𝑟 ∈ Abel ∣ ( ( mulGrp ‘ 𝑟 ) ∈ Smgrp ∧ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } |
51 |
49 50
|
elrab2 |
⊢ ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ ( 𝐺 ∈ Smgrp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) ) |
52 |
|
3anass |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ↔ ( 𝑅 ∈ Abel ∧ ( 𝐺 ∈ Smgrp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) ) |
53 |
51 52
|
bitr4i |
⊢ ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |