Metamath Proof Explorer


Theorem isrng

Description: The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020)

Ref Expression
Hypotheses isrng.b 𝐵 = ( Base ‘ 𝑅 )
isrng.g 𝐺 = ( mulGrp ‘ 𝑅 )
isrng.p + = ( +g𝑅 )
isrng.t · = ( .r𝑅 )
Assertion isrng ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 isrng.b 𝐵 = ( Base ‘ 𝑅 )
2 isrng.g 𝐺 = ( mulGrp ‘ 𝑅 )
3 isrng.p + = ( +g𝑅 )
4 isrng.t · = ( .r𝑅 )
5 fveq2 ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) )
6 5 2 eqtr4di ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = 𝐺 )
7 6 eleq1d ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ∈ Smgrp ↔ 𝐺 ∈ Smgrp ) )
8 fvexd ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V )
9 fveq2 ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
10 9 1 eqtr4di ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 )
11 fvexd ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) → ( +g𝑟 ) ∈ V )
12 fveq2 ( 𝑟 = 𝑅 → ( +g𝑟 ) = ( +g𝑅 ) )
13 12 adantr ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) → ( +g𝑟 ) = ( +g𝑅 ) )
14 13 3 eqtr4di ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) → ( +g𝑟 ) = + )
15 fvexd ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( .r𝑟 ) ∈ V )
16 fveq2 ( 𝑟 = 𝑅 → ( .r𝑟 ) = ( .r𝑅 ) )
17 16 adantr ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) → ( .r𝑟 ) = ( .r𝑅 ) )
18 17 adantr ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( .r𝑟 ) = ( .r𝑅 ) )
19 18 4 eqtr4di ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( .r𝑟 ) = · )
20 simpllr ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑏 = 𝐵 )
21 simpr ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑡 = · )
22 eqidd ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑥 = 𝑥 )
23 oveq ( 𝑝 = + → ( 𝑦 𝑝 𝑧 ) = ( 𝑦 + 𝑧 ) )
24 23 ad2antlr ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑦 𝑝 𝑧 ) = ( 𝑦 + 𝑧 ) )
25 21 22 24 oveq123d ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( 𝑥 · ( 𝑦 + 𝑧 ) ) )
26 simpr ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) → 𝑝 = + )
27 26 adantr ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑝 = + )
28 oveq ( 𝑡 = · → ( 𝑥 𝑡 𝑦 ) = ( 𝑥 · 𝑦 ) )
29 28 adantl ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑡 𝑦 ) = ( 𝑥 · 𝑦 ) )
30 oveq ( 𝑡 = · → ( 𝑥 𝑡 𝑧 ) = ( 𝑥 · 𝑧 ) )
31 30 adantl ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑡 𝑧 ) = ( 𝑥 · 𝑧 ) )
32 27 29 31 oveq123d ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) )
33 25 32 eqeq12d ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ↔ ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) )
34 oveq ( 𝑝 = + → ( 𝑥 𝑝 𝑦 ) = ( 𝑥 + 𝑦 ) )
35 34 ad2antlr ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑝 𝑦 ) = ( 𝑥 + 𝑦 ) )
36 eqidd ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑧 = 𝑧 )
37 21 35 36 oveq123d ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 + 𝑦 ) · 𝑧 ) )
38 oveq ( 𝑡 = · → ( 𝑦 𝑡 𝑧 ) = ( 𝑦 · 𝑧 ) )
39 38 adantl ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑦 𝑡 𝑧 ) = ( 𝑦 · 𝑧 ) )
40 27 31 39 oveq123d ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) )
41 37 40 eqeq12d ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ↔ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) )
42 33 41 anbi12d ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) )
43 20 42 raleqbidv ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ∀ 𝑧𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) )
44 20 43 raleqbidv ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ∀ 𝑦𝑏𝑧𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) )
45 20 44 raleqbidv ( ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) )
46 15 19 45 sbcied2 ( ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( [ ( .r𝑟 ) / 𝑡 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) )
47 11 14 46 sbcied2 ( ( 𝑟 = 𝑅𝑏 = 𝐵 ) → ( [ ( +g𝑟 ) / 𝑝 ] [ ( .r𝑟 ) / 𝑡 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) )
48 8 10 47 sbcied2 ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g𝑟 ) / 𝑝 ] [ ( .r𝑟 ) / 𝑡 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) )
49 7 48 anbi12d ( 𝑟 = 𝑅 → ( ( ( mulGrp ‘ 𝑟 ) ∈ Smgrp ∧ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g𝑟 ) / 𝑝 ] [ ( .r𝑟 ) / 𝑡 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) ↔ ( 𝐺 ∈ Smgrp ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) )
50 df-rng0 Rng = { 𝑟 ∈ Abel ∣ ( ( mulGrp ‘ 𝑟 ) ∈ Smgrp ∧ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g𝑟 ) / 𝑝 ] [ ( .r𝑟 ) / 𝑡 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) }
51 49 50 elrab2 ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ ( 𝐺 ∈ Smgrp ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) )
52 3anass ( ( 𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ↔ ( 𝑅 ∈ Abel ∧ ( 𝐺 ∈ Smgrp ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) )
53 51 52 bitr4i ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) )