Step |
Hyp |
Ref |
Expression |
0 |
|
crng |
⊢ Rng |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cabl |
⊢ Abel |
3 |
|
cmgp |
⊢ mulGrp |
4 |
1
|
cv |
⊢ 𝑓 |
5 |
4 3
|
cfv |
⊢ ( mulGrp ‘ 𝑓 ) |
6 |
|
csgrp |
⊢ Smgrp |
7 |
5 6
|
wcel |
⊢ ( mulGrp ‘ 𝑓 ) ∈ Smgrp |
8 |
|
cbs |
⊢ Base |
9 |
4 8
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
10 |
|
vb |
⊢ 𝑏 |
11 |
|
cplusg |
⊢ +g |
12 |
4 11
|
cfv |
⊢ ( +g ‘ 𝑓 ) |
13 |
|
vp |
⊢ 𝑝 |
14 |
|
cmulr |
⊢ .r |
15 |
4 14
|
cfv |
⊢ ( .r ‘ 𝑓 ) |
16 |
|
vt |
⊢ 𝑡 |
17 |
|
vx |
⊢ 𝑥 |
18 |
10
|
cv |
⊢ 𝑏 |
19 |
|
vy |
⊢ 𝑦 |
20 |
|
vz |
⊢ 𝑧 |
21 |
17
|
cv |
⊢ 𝑥 |
22 |
16
|
cv |
⊢ 𝑡 |
23 |
19
|
cv |
⊢ 𝑦 |
24 |
13
|
cv |
⊢ 𝑝 |
25 |
20
|
cv |
⊢ 𝑧 |
26 |
23 25 24
|
co |
⊢ ( 𝑦 𝑝 𝑧 ) |
27 |
21 26 22
|
co |
⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) |
28 |
21 23 22
|
co |
⊢ ( 𝑥 𝑡 𝑦 ) |
29 |
21 25 22
|
co |
⊢ ( 𝑥 𝑡 𝑧 ) |
30 |
28 29 24
|
co |
⊢ ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) |
31 |
27 30
|
wceq |
⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) |
32 |
21 23 24
|
co |
⊢ ( 𝑥 𝑝 𝑦 ) |
33 |
32 25 22
|
co |
⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) |
34 |
23 25 22
|
co |
⊢ ( 𝑦 𝑡 𝑧 ) |
35 |
29 34 24
|
co |
⊢ ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) |
36 |
33 35
|
wceq |
⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) |
37 |
31 36
|
wa |
⊢ ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
38 |
37 20 18
|
wral |
⊢ ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
39 |
38 19 18
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
40 |
39 17 18
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
41 |
40 16 15
|
wsbc |
⊢ [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
42 |
41 13 12
|
wsbc |
⊢ [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
43 |
42 10 9
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
44 |
7 43
|
wa |
⊢ ( ( mulGrp ‘ 𝑓 ) ∈ Smgrp ∧ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) |
45 |
44 1 2
|
crab |
⊢ { 𝑓 ∈ Abel ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Smgrp ∧ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } |
46 |
0 45
|
wceq |
⊢ Rng = { 𝑓 ∈ Abel ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Smgrp ∧ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } |