| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmpreimaidl.i |
|
| 2 |
|
cnvimass |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
3 4
|
rhmf |
|
| 6 |
2 5
|
fssdm |
|
| 7 |
6
|
adantr |
|
| 8 |
5
|
adantr |
|
| 9 |
8
|
ffund |
|
| 10 |
|
rhmrcl1 |
|
| 11 |
10
|
adantr |
|
| 12 |
|
eqid |
|
| 13 |
3 12
|
ring0cl |
|
| 14 |
11 13
|
syl |
|
| 15 |
8
|
fdmd |
|
| 16 |
14 15
|
eleqtrrd |
|
| 17 |
|
rhmghm |
|
| 18 |
|
ghmmhm |
|
| 19 |
|
eqid |
|
| 20 |
12 19
|
mhm0 |
|
| 21 |
17 18 20
|
3syl |
|
| 22 |
21
|
adantr |
|
| 23 |
|
rhmrcl2 |
|
| 24 |
|
eqid |
|
| 25 |
24 19
|
lidl0cl |
|
| 26 |
23 25
|
sylan |
|
| 27 |
22 26
|
eqeltrd |
|
| 28 |
|
fvimacnv |
|
| 29 |
28
|
biimpa |
|
| 30 |
9 16 27 29
|
syl21anc |
|
| 31 |
30
|
ne0d |
|
| 32 |
8
|
ffnd |
|
| 33 |
32
|
ad3antrrr |
|
| 34 |
11
|
ad3antrrr |
|
| 35 |
|
simpllr |
|
| 36 |
6
|
ad2antrr |
|
| 37 |
36
|
sselda |
|
| 38 |
37
|
adantr |
|
| 39 |
|
eqid |
|
| 40 |
3 39
|
ringcl |
|
| 41 |
34 35 38 40
|
syl3anc |
|
| 42 |
36
|
adantr |
|
| 43 |
42
|
sselda |
|
| 44 |
|
eqid |
|
| 45 |
3 44
|
ringacl |
|
| 46 |
34 41 43 45
|
syl3anc |
|
| 47 |
17
|
ad4antr |
|
| 48 |
|
eqid |
|
| 49 |
3 44 48
|
ghmlin |
|
| 50 |
47 41 43 49
|
syl3anc |
|
| 51 |
|
simp-4l |
|
| 52 |
51 23
|
syl |
|
| 53 |
|
simpr |
|
| 54 |
53
|
ad3antrrr |
|
| 55 |
|
eqid |
|
| 56 |
3 39 55
|
rhmmul |
|
| 57 |
51 35 38 56
|
syl3anc |
|
| 58 |
8
|
ffvelcdmda |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
|
simplr |
|
| 61 |
|
elpreima |
|
| 62 |
61
|
simplbda |
|
| 63 |
33 60 62
|
syl2anc |
|
| 64 |
24 4 55
|
lidlmcl |
|
| 65 |
52 54 59 63 64
|
syl22anc |
|
| 66 |
57 65
|
eqeltrd |
|
| 67 |
|
simpr |
|
| 68 |
|
elpreima |
|
| 69 |
68
|
simplbda |
|
| 70 |
33 67 69
|
syl2anc |
|
| 71 |
24 48
|
lidlacl |
|
| 72 |
52 54 66 70 71
|
syl22anc |
|
| 73 |
50 72
|
eqeltrd |
|
| 74 |
33 46 73
|
elpreimad |
|
| 75 |
74
|
anasss |
|
| 76 |
75
|
ralrimivva |
|
| 77 |
76
|
ralrimiva |
|
| 78 |
1 3 44 39
|
islidl |
|
| 79 |
7 31 77 78
|
syl3anbrc |
|