Metamath Proof Explorer


Theorem ghmlin

Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmlin.x X = Base S
ghmlin.a + ˙ = + S
ghmlin.b ˙ = + T
Assertion ghmlin F S GrpHom T U X V X F U + ˙ V = F U ˙ F V

Proof

Step Hyp Ref Expression
1 ghmlin.x X = Base S
2 ghmlin.a + ˙ = + S
3 ghmlin.b ˙ = + T
4 eqid Base T = Base T
5 1 4 2 3 isghm F S GrpHom T S Grp T Grp F : X Base T a X b X F a + ˙ b = F a ˙ F b
6 5 simprbi F S GrpHom T F : X Base T a X b X F a + ˙ b = F a ˙ F b
7 6 simprd F S GrpHom T a X b X F a + ˙ b = F a ˙ F b
8 fvoveq1 a = U F a + ˙ b = F U + ˙ b
9 fveq2 a = U F a = F U
10 9 oveq1d a = U F a ˙ F b = F U ˙ F b
11 8 10 eqeq12d a = U F a + ˙ b = F a ˙ F b F U + ˙ b = F U ˙ F b
12 oveq2 b = V U + ˙ b = U + ˙ V
13 12 fveq2d b = V F U + ˙ b = F U + ˙ V
14 fveq2 b = V F b = F V
15 14 oveq2d b = V F U ˙ F b = F U ˙ F V
16 13 15 eqeq12d b = V F U + ˙ b = F U ˙ F b F U + ˙ V = F U ˙ F V
17 11 16 rspc2v U X V X a X b X F a + ˙ b = F a ˙ F b F U + ˙ V = F U ˙ F V
18 7 17 mpan9 F S GrpHom T U X V X F U + ˙ V = F U ˙ F V
19 18 3impb F S GrpHom T U X V X F U + ˙ V = F U ˙ F V