Metamath Proof Explorer


Theorem ghmlin

Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmlin.x X=BaseS
ghmlin.a +˙=+S
ghmlin.b ˙=+T
Assertion ghmlin FSGrpHomTUXVXFU+˙V=FU˙FV

Proof

Step Hyp Ref Expression
1 ghmlin.x X=BaseS
2 ghmlin.a +˙=+S
3 ghmlin.b ˙=+T
4 eqid BaseT=BaseT
5 1 4 2 3 isghm FSGrpHomTSGrpTGrpF:XBaseTaXbXFa+˙b=Fa˙Fb
6 5 simprbi FSGrpHomTF:XBaseTaXbXFa+˙b=Fa˙Fb
7 6 simprd FSGrpHomTaXbXFa+˙b=Fa˙Fb
8 fvoveq1 a=UFa+˙b=FU+˙b
9 fveq2 a=UFa=FU
10 9 oveq1d a=UFa˙Fb=FU˙Fb
11 8 10 eqeq12d a=UFa+˙b=Fa˙FbFU+˙b=FU˙Fb
12 oveq2 b=VU+˙b=U+˙V
13 12 fveq2d b=VFU+˙b=FU+˙V
14 fveq2 b=VFb=FV
15 14 oveq2d b=VFU˙Fb=FU˙FV
16 13 15 eqeq12d b=VFU+˙b=FU˙FbFU+˙V=FU˙FV
17 11 16 rspc2v UXVXaXbXFa+˙b=Fa˙FbFU+˙V=FU˙FV
18 7 17 mpan9 FSGrpHomTUXVXFU+˙V=FU˙FV
19 18 3impb FSGrpHomTUXVXFU+˙V=FU˙FV