Metamath Proof Explorer


Theorem fvimacnv

Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006)

Ref Expression
Assertion fvimacnv FunFAdomFFABAF-1B

Proof

Step Hyp Ref Expression
1 funfvop FunFAdomFAFAF
2 fvex FAV
3 opelcnvg FAVAdomFFAAF-1AFAF
4 2 3 mpan AdomFFAAF-1AFAF
5 4 adantl FunFAdomFFAAF-1AFAF
6 1 5 mpbird FunFAdomFFAAF-1
7 elimasng FAVAdomFAF-1FAFAAF-1
8 2 7 mpan AdomFAF-1FAFAAF-1
9 8 adantl FunFAdomFAF-1FAFAAF-1
10 6 9 mpbird FunFAdomFAF-1FA
11 2 snss FABFAB
12 imass2 FABF-1FAF-1B
13 11 12 sylbi FABF-1FAF-1B
14 13 sseld FABAF-1FAAF-1B
15 10 14 syl5com FunFAdomFFABAF-1B
16 fvimacnvi FunFAF-1BFAB
17 16 ex FunFAF-1BFAB
18 17 adantr FunFAdomFAF-1BFAB
19 15 18 impbid FunFAdomFFABAF-1B