Step |
Hyp |
Ref |
Expression |
1 |
|
funfvop |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) |
2 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
3 |
|
opelcnvg |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ V ∧ 𝐴 ∈ dom 𝐹 ) → ( 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ dom 𝐹 → ( 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) |
5 |
4
|
adantl |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) |
6 |
1 5
|
mpbird |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ) |
7 |
|
elimasng |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ V ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ) ) |
8 |
2 7
|
mpan |
⊢ ( 𝐴 ∈ dom 𝐹 → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ) ) |
9 |
8
|
adantl |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ) ) |
10 |
6 9
|
mpbird |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
11 |
2
|
snss |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) |
12 |
|
imass2 |
⊢ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
13 |
11 12
|
sylbi |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
14 |
13
|
sseld |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
15 |
10 14
|
syl5com |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
16 |
|
fvimacnvi |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
17 |
16
|
ex |
⊢ ( Fun 𝐹 → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |
18 |
17
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |
19 |
15 18
|
impbid |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |