| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funfvop | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉  ∈  𝐹 ) | 
						
							| 2 |  | fvex | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 3 |  | opelcnvg | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  ∈  V  ∧  𝐴  ∈  dom  𝐹 )  →  ( 〈 ( 𝐹 ‘ 𝐴 ) ,  𝐴 〉  ∈  ◡ 𝐹  ↔  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉  ∈  𝐹 ) ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝐴  ∈  dom  𝐹  →  ( 〈 ( 𝐹 ‘ 𝐴 ) ,  𝐴 〉  ∈  ◡ 𝐹  ↔  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉  ∈  𝐹 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( 〈 ( 𝐹 ‘ 𝐴 ) ,  𝐴 〉  ∈  ◡ 𝐹  ↔  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉  ∈  𝐹 ) ) | 
						
							| 6 | 1 5 | mpbird | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  〈 ( 𝐹 ‘ 𝐴 ) ,  𝐴 〉  ∈  ◡ 𝐹 ) | 
						
							| 7 |  | elimasng | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  ∈  V  ∧  𝐴  ∈  dom  𝐹 )  →  ( 𝐴  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  ↔  〈 ( 𝐹 ‘ 𝐴 ) ,  𝐴 〉  ∈  ◡ 𝐹 ) ) | 
						
							| 8 | 2 7 | mpan | ⊢ ( 𝐴  ∈  dom  𝐹  →  ( 𝐴  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  ↔  〈 ( 𝐹 ‘ 𝐴 ) ,  𝐴 〉  ∈  ◡ 𝐹 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( 𝐴  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  ↔  〈 ( 𝐹 ‘ 𝐴 ) ,  𝐴 〉  ∈  ◡ 𝐹 ) ) | 
						
							| 10 | 6 9 | mpbird | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  𝐴  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 11 | 2 | snss | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ↔  { ( 𝐹 ‘ 𝐴 ) }  ⊆  𝐵 ) | 
						
							| 12 |  | imass2 | ⊢ ( { ( 𝐹 ‘ 𝐴 ) }  ⊆  𝐵  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  ⊆  ( ◡ 𝐹  “  𝐵 ) ) | 
						
							| 13 | 11 12 | sylbi | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  ⊆  ( ◡ 𝐹  “  𝐵 ) ) | 
						
							| 14 | 13 | sseld | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  →  ( 𝐴  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  →  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) ) ) | 
						
							| 15 | 10 14 | syl5com | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  →  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) ) ) | 
						
							| 16 |  | fvimacnvi | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 17 | 16 | ex | ⊢ ( Fun  𝐹  →  ( 𝐴  ∈  ( ◡ 𝐹  “  𝐵 )  →  ( 𝐹 ‘ 𝐴 )  ∈  𝐵 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( 𝐴  ∈  ( ◡ 𝐹  “  𝐵 )  →  ( 𝐹 ‘ 𝐴 )  ∈  𝐵 ) ) | 
						
							| 19 | 15 18 | impbid | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ↔  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) ) ) |