Step |
Hyp |
Ref |
Expression |
1 |
|
snssi |
⊢ ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
2 |
|
funimass2 |
⊢ ( ( Fun 𝐹 ∧ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) |
3 |
1 2
|
sylan2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) |
4 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
5 |
4
|
snss |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) |
6 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝐵 ) ⊆ dom 𝐹 |
7 |
6
|
sseli |
⊢ ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
8 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
9 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
10 |
8 9
|
sylanb |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
11 |
7 10
|
sylan2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
12 |
11
|
sseq1d |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) ) |
13 |
5 12
|
bitrid |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) ) |
14 |
3 13
|
mpbird |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |