Metamath Proof Explorer


Theorem fvimacnvi

Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007)

Ref Expression
Assertion fvimacnvi ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ( 𝐹𝐴 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 snssi ( 𝐴 ∈ ( 𝐹𝐵 ) → { 𝐴 } ⊆ ( 𝐹𝐵 ) )
2 funimass2 ( ( Fun 𝐹 ∧ { 𝐴 } ⊆ ( 𝐹𝐵 ) ) → ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 )
3 1 2 sylan2 ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 )
4 fvex ( 𝐹𝐴 ) ∈ V
5 4 snss ( ( 𝐹𝐴 ) ∈ 𝐵 ↔ { ( 𝐹𝐴 ) } ⊆ 𝐵 )
6 cnvimass ( 𝐹𝐵 ) ⊆ dom 𝐹
7 6 sseli ( 𝐴 ∈ ( 𝐹𝐵 ) → 𝐴 ∈ dom 𝐹 )
8 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
9 fnsnfv ( ( 𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹 ) → { ( 𝐹𝐴 ) } = ( 𝐹 “ { 𝐴 } ) )
10 8 9 sylanb ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → { ( 𝐹𝐴 ) } = ( 𝐹 “ { 𝐴 } ) )
11 7 10 sylan2 ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → { ( 𝐹𝐴 ) } = ( 𝐹 “ { 𝐴 } ) )
12 11 sseq1d ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ( { ( 𝐹𝐴 ) } ⊆ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) )
13 5 12 bitrid ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ( ( 𝐹𝐴 ) ∈ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) )
14 3 13 mpbird ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ( 𝐹𝐴 ) ∈ 𝐵 )