| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							snssi | 
							⊢ ( 𝐴  ∈  ( ◡ 𝐹  “  𝐵 )  →  { 𝐴 }  ⊆  ( ◡ 𝐹  “  𝐵 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							funimass2 | 
							⊢ ( ( Fun  𝐹  ∧  { 𝐴 }  ⊆  ( ◡ 𝐹  “  𝐵 ) )  →  ( 𝐹  “  { 𝐴 } )  ⊆  𝐵 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan2 | 
							⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) )  →  ( 𝐹  “  { 𝐴 } )  ⊆  𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝐹 ‘ 𝐴 )  ∈  V  | 
						
						
							| 5 | 
							
								4
							 | 
							snss | 
							⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ↔  { ( 𝐹 ‘ 𝐴 ) }  ⊆  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							cnvimass | 
							⊢ ( ◡ 𝐹  “  𝐵 )  ⊆  dom  𝐹  | 
						
						
							| 7 | 
							
								6
							 | 
							sseli | 
							⊢ ( 𝐴  ∈  ( ◡ 𝐹  “  𝐵 )  →  𝐴  ∈  dom  𝐹 )  | 
						
						
							| 8 | 
							
								
							 | 
							funfn | 
							⊢ ( Fun  𝐹  ↔  𝐹  Fn  dom  𝐹 )  | 
						
						
							| 9 | 
							
								
							 | 
							fnsnfv | 
							⊢ ( ( 𝐹  Fn  dom  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  { ( 𝐹 ‘ 𝐴 ) }  =  ( 𝐹  “  { 𝐴 } ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylanb | 
							⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  { ( 𝐹 ‘ 𝐴 ) }  =  ( 𝐹  “  { 𝐴 } ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							sylan2 | 
							⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) )  →  { ( 𝐹 ‘ 𝐴 ) }  =  ( 𝐹  “  { 𝐴 } ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							sseq1d | 
							⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) )  →  ( { ( 𝐹 ‘ 𝐴 ) }  ⊆  𝐵  ↔  ( 𝐹  “  { 𝐴 } )  ⊆  𝐵 ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							bitrid | 
							⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) )  →  ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ↔  ( 𝐹  “  { 𝐴 } )  ⊆  𝐵 ) )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							mpbird | 
							⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  𝐵 )  |