Step |
Hyp |
Ref |
Expression |
1 |
|
funfvop |
|- ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) |
2 |
|
fvex |
|- ( F ` A ) e. _V |
3 |
|
opelcnvg |
|- ( ( ( F ` A ) e. _V /\ A e. dom F ) -> ( <. ( F ` A ) , A >. e. `' F <-> <. A , ( F ` A ) >. e. F ) ) |
4 |
2 3
|
mpan |
|- ( A e. dom F -> ( <. ( F ` A ) , A >. e. `' F <-> <. A , ( F ` A ) >. e. F ) ) |
5 |
4
|
adantl |
|- ( ( Fun F /\ A e. dom F ) -> ( <. ( F ` A ) , A >. e. `' F <-> <. A , ( F ` A ) >. e. F ) ) |
6 |
1 5
|
mpbird |
|- ( ( Fun F /\ A e. dom F ) -> <. ( F ` A ) , A >. e. `' F ) |
7 |
|
elimasng |
|- ( ( ( F ` A ) e. _V /\ A e. dom F ) -> ( A e. ( `' F " { ( F ` A ) } ) <-> <. ( F ` A ) , A >. e. `' F ) ) |
8 |
2 7
|
mpan |
|- ( A e. dom F -> ( A e. ( `' F " { ( F ` A ) } ) <-> <. ( F ` A ) , A >. e. `' F ) ) |
9 |
8
|
adantl |
|- ( ( Fun F /\ A e. dom F ) -> ( A e. ( `' F " { ( F ` A ) } ) <-> <. ( F ` A ) , A >. e. `' F ) ) |
10 |
6 9
|
mpbird |
|- ( ( Fun F /\ A e. dom F ) -> A e. ( `' F " { ( F ` A ) } ) ) |
11 |
2
|
snss |
|- ( ( F ` A ) e. B <-> { ( F ` A ) } C_ B ) |
12 |
|
imass2 |
|- ( { ( F ` A ) } C_ B -> ( `' F " { ( F ` A ) } ) C_ ( `' F " B ) ) |
13 |
11 12
|
sylbi |
|- ( ( F ` A ) e. B -> ( `' F " { ( F ` A ) } ) C_ ( `' F " B ) ) |
14 |
13
|
sseld |
|- ( ( F ` A ) e. B -> ( A e. ( `' F " { ( F ` A ) } ) -> A e. ( `' F " B ) ) ) |
15 |
10 14
|
syl5com |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) ) |
16 |
|
fvimacnvi |
|- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( F ` A ) e. B ) |
17 |
16
|
ex |
|- ( Fun F -> ( A e. ( `' F " B ) -> ( F ` A ) e. B ) ) |
18 |
17
|
adantr |
|- ( ( Fun F /\ A e. dom F ) -> ( A e. ( `' F " B ) -> ( F ` A ) e. B ) ) |
19 |
15 18
|
impbid |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) ) |