| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funimass4 |  |-  ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A ( F ` x ) e. B ) ) | 
						
							| 2 |  | ssel |  |-  ( A C_ dom F -> ( x e. A -> x e. dom F ) ) | 
						
							| 3 |  | fvimacnv |  |-  ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) | 
						
							| 4 | 3 | ex |  |-  ( Fun F -> ( x e. dom F -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) ) | 
						
							| 5 | 2 4 | syl9r |  |-  ( Fun F -> ( A C_ dom F -> ( x e. A -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) ) ) | 
						
							| 6 | 5 | imp31 |  |-  ( ( ( Fun F /\ A C_ dom F ) /\ x e. A ) -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) | 
						
							| 7 | 6 | ralbidva |  |-  ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) e. B <-> A. x e. A x e. ( `' F " B ) ) ) | 
						
							| 8 | 1 7 | bitrd |  |-  ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A x e. ( `' F " B ) ) ) | 
						
							| 9 |  | dfss3 |  |-  ( A C_ ( `' F " B ) <-> A. x e. A x e. ( `' F " B ) ) | 
						
							| 10 | 8 9 | bitr4di |  |-  ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A C_ ( `' F " B ) ) ) |