Metamath Proof Explorer


Theorem funimass3

Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv would be the special case of A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006)

Ref Expression
Assertion funimass3 FunFAdomFFABAF-1B

Proof

Step Hyp Ref Expression
1 funimass4 FunFAdomFFABxAFxB
2 ssel AdomFxAxdomF
3 fvimacnv FunFxdomFFxBxF-1B
4 3 ex FunFxdomFFxBxF-1B
5 2 4 syl9r FunFAdomFxAFxBxF-1B
6 5 imp31 FunFAdomFxAFxBxF-1B
7 6 ralbidva FunFAdomFxAFxBxAxF-1B
8 1 7 bitrd FunFAdomFFABxAxF-1B
9 dfss3 AF-1BxAxF-1B
10 8 9 bitr4di FunFAdomFFABAF-1B