Metamath Proof Explorer


Theorem elimasng

Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006)

Ref Expression
Assertion elimasng ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sneq ( 𝑦 = 𝐵 → { 𝑦 } = { 𝐵 } )
2 1 imaeq2d ( 𝑦 = 𝐵 → ( 𝐴 “ { 𝑦 } ) = ( 𝐴 “ { 𝐵 } ) )
3 2 eleq2d ( 𝑦 = 𝐵 → ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↔ 𝑧 ∈ ( 𝐴 “ { 𝐵 } ) ) )
4 opeq1 ( 𝑦 = 𝐵 → ⟨ 𝑦 , 𝑧 ⟩ = ⟨ 𝐵 , 𝑧 ⟩ )
5 4 eleq1d ( 𝑦 = 𝐵 → ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐴 ↔ ⟨ 𝐵 , 𝑧 ⟩ ∈ 𝐴 ) )
6 3 5 bibi12d ( 𝑦 = 𝐵 → ( ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐴 ) ↔ ( 𝑧 ∈ ( 𝐴 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝑧 ⟩ ∈ 𝐴 ) ) )
7 eleq1 ( 𝑧 = 𝐶 → ( 𝑧 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ) )
8 opeq2 ( 𝑧 = 𝐶 → ⟨ 𝐵 , 𝑧 ⟩ = ⟨ 𝐵 , 𝐶 ⟩ )
9 8 eleq1d ( 𝑧 = 𝐶 → ( ⟨ 𝐵 , 𝑧 ⟩ ∈ 𝐴 ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝐴 ) )
10 7 9 bibi12d ( 𝑧 = 𝐶 → ( ( 𝑧 ∈ ( 𝐴 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝑧 ⟩ ∈ 𝐴 ) ↔ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝐴 ) ) )
11 vex 𝑦 ∈ V
12 vex 𝑧 ∈ V
13 11 12 elimasn ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐴 )
14 6 10 13 vtocl2g ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝐴 ) )