Metamath Proof Explorer


Theorem lidlmcl

Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidlcl.u U=LIdealR
lidlcl.b B=BaseR
lidlmcl.t ·˙=R
Assertion lidlmcl RRingIUXBYIX·˙YI

Proof

Step Hyp Ref Expression
1 lidlcl.u U=LIdealR
2 lidlcl.b B=BaseR
3 lidlmcl.t ·˙=R
4 rlmvsca R=ringLModR
5 3 4 eqtri ·˙=ringLModR
6 5 oveqi X·˙Y=XringLModRY
7 rlmlmod RRingringLModRLMod
8 7 ad2antrr RRingIUXBYIringLModRLMod
9 simpr RRingIUIU
10 lidlval LIdealR=LSubSpringLModR
11 1 10 eqtri U=LSubSpringLModR
12 9 11 eleqtrdi RRingIUILSubSpringLModR
13 12 adantr RRingIUXBYIILSubSpringLModR
14 rlmsca RRingR=ScalarringLModR
15 14 fveq2d RRingBaseR=BaseScalarringLModR
16 2 15 eqtrid RRingB=BaseScalarringLModR
17 16 eleq2d RRingXBXBaseScalarringLModR
18 17 biimpa RRingXBXBaseScalarringLModR
19 18 ad2ant2r RRingIUXBYIXBaseScalarringLModR
20 simprr RRingIUXBYIYI
21 eqid ScalarringLModR=ScalarringLModR
22 eqid ringLModR=ringLModR
23 eqid BaseScalarringLModR=BaseScalarringLModR
24 eqid LSubSpringLModR=LSubSpringLModR
25 21 22 23 24 lssvscl ringLModRLModILSubSpringLModRXBaseScalarringLModRYIXringLModRYI
26 8 13 19 20 25 syl22anc RRingIUXBYIXringLModRYI
27 6 26 eqeltrid RRingIUXBYIX·˙YI