Metamath Proof Explorer


Definition df-lss

Description: Define the set of linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013)

Ref Expression
Assertion df-lss LSubSp=wVs𝒫Basew|xBaseScalarwasbsxwa+wbs

Detailed syntax breakdown

Step Hyp Ref Expression
0 clss classLSubSp
1 vw setvarw
2 cvv classV
3 vs setvars
4 cbs classBase
5 1 cv setvarw
6 5 4 cfv classBasew
7 6 cpw class𝒫Basew
8 c0 class
9 8 csn class
10 7 9 cdif class𝒫Basew
11 vx setvarx
12 csca classScalar
13 5 12 cfv classScalarw
14 13 4 cfv classBaseScalarw
15 va setvara
16 3 cv setvars
17 vb setvarb
18 11 cv setvarx
19 cvsca class𝑠
20 5 19 cfv classw
21 15 cv setvara
22 18 21 20 co classxwa
23 cplusg class+𝑔
24 5 23 cfv class+w
25 17 cv setvarb
26 22 25 24 co classxwa+wb
27 26 16 wcel wffxwa+wbs
28 27 17 16 wral wffbsxwa+wbs
29 28 15 16 wral wffasbsxwa+wbs
30 29 11 14 wral wffxBaseScalarwasbsxwa+wbs
31 30 3 10 crab classs𝒫Basew|xBaseScalarwasbsxwa+wbs
32 1 2 31 cmpt classwVs𝒫Basew|xBaseScalarwasbsxwa+wbs
33 0 32 wceq wffLSubSp=wVs𝒫Basew|xBaseScalarwasbsxwa+wbs