| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clss |  |-  LSubSp | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vs |  |-  s | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  w | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` w ) | 
						
							| 7 | 6 | cpw |  |-  ~P ( Base ` w ) | 
						
							| 8 |  | c0 |  |-  (/) | 
						
							| 9 | 8 | csn |  |-  { (/) } | 
						
							| 10 | 7 9 | cdif |  |-  ( ~P ( Base ` w ) \ { (/) } ) | 
						
							| 11 |  | vx |  |-  x | 
						
							| 12 |  | csca |  |-  Scalar | 
						
							| 13 | 5 12 | cfv |  |-  ( Scalar ` w ) | 
						
							| 14 | 13 4 | cfv |  |-  ( Base ` ( Scalar ` w ) ) | 
						
							| 15 |  | va |  |-  a | 
						
							| 16 | 3 | cv |  |-  s | 
						
							| 17 |  | vb |  |-  b | 
						
							| 18 | 11 | cv |  |-  x | 
						
							| 19 |  | cvsca |  |-  .s | 
						
							| 20 | 5 19 | cfv |  |-  ( .s ` w ) | 
						
							| 21 | 15 | cv |  |-  a | 
						
							| 22 | 18 21 20 | co |  |-  ( x ( .s ` w ) a ) | 
						
							| 23 |  | cplusg |  |-  +g | 
						
							| 24 | 5 23 | cfv |  |-  ( +g ` w ) | 
						
							| 25 | 17 | cv |  |-  b | 
						
							| 26 | 22 25 24 | co |  |-  ( ( x ( .s ` w ) a ) ( +g ` w ) b ) | 
						
							| 27 | 26 16 | wcel |  |-  ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s | 
						
							| 28 | 27 17 16 | wral |  |-  A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s | 
						
							| 29 | 28 15 16 | wral |  |-  A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s | 
						
							| 30 | 29 11 14 | wral |  |-  A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s | 
						
							| 31 | 30 3 10 | crab |  |-  { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } | 
						
							| 32 | 1 2 31 | cmpt |  |-  ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } ) | 
						
							| 33 | 0 32 | wceq |  |-  LSubSp = ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } ) |