| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
lidlcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
lidlmcl.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
ringrng |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝑅 ∈ Rng ) |
| 6 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 8 |
1 7
|
lidl0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 9 |
5 6 8
|
3jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ) |
| 10 |
7 2 3 1
|
rnglidlmcl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |
| 11 |
9 10
|
sylan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |