Metamath Proof Explorer


Theorem lidl1el

Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)

Ref Expression
Hypotheses lidlcl.u 𝑈 = ( LIdeal ‘ 𝑅 )
lidlcl.b 𝐵 = ( Base ‘ 𝑅 )
lidl1el.o 1 = ( 1r𝑅 )
Assertion lidl1el ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 1𝐼𝐼 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lidlcl.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 lidlcl.b 𝐵 = ( Base ‘ 𝑅 )
3 lidl1el.o 1 = ( 1r𝑅 )
4 2 1 lidlss ( 𝐼𝑈𝐼𝐵 )
5 4 ad2antlr ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ 1𝐼 ) → 𝐼𝐵 )
6 eqid ( .r𝑅 ) = ( .r𝑅 )
7 2 6 3 ringridm ( ( 𝑅 ∈ Ring ∧ 𝑎𝐵 ) → ( 𝑎 ( .r𝑅 ) 1 ) = 𝑎 )
8 7 ad2ant2rl ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( 1𝐼𝑎𝐵 ) ) → ( 𝑎 ( .r𝑅 ) 1 ) = 𝑎 )
9 1 2 6 lidlmcl ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( 𝑎𝐵1𝐼 ) ) → ( 𝑎 ( .r𝑅 ) 1 ) ∈ 𝐼 )
10 9 ancom2s ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( 1𝐼𝑎𝐵 ) ) → ( 𝑎 ( .r𝑅 ) 1 ) ∈ 𝐼 )
11 8 10 eqeltrrd ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( 1𝐼𝑎𝐵 ) ) → 𝑎𝐼 )
12 11 expr ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ 1𝐼 ) → ( 𝑎𝐵𝑎𝐼 ) )
13 12 ssrdv ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ 1𝐼 ) → 𝐵𝐼 )
14 5 13 eqssd ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ 1𝐼 ) → 𝐼 = 𝐵 )
15 14 ex ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 1𝐼𝐼 = 𝐵 ) )
16 2 3 ringidcl ( 𝑅 ∈ Ring → 1𝐵 )
17 16 adantr ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 1𝐵 )
18 eleq2 ( 𝐼 = 𝐵 → ( 1𝐼1𝐵 ) )
19 17 18 syl5ibrcom ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝐼 = 𝐵1𝐼 ) )
20 15 19 impbid ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 1𝐼𝐼 = 𝐵 ) )