Metamath Proof Explorer


Theorem ancom2s

Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypothesis an12s.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
Assertion ancom2s ( ( 𝜑 ∧ ( 𝜒𝜓 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 an12s.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
2 pm3.22 ( ( 𝜒𝜓 ) → ( 𝜓𝜒 ) )
3 2 1 sylan2 ( ( 𝜑 ∧ ( 𝜒𝜓 ) ) → 𝜃 )