Metamath Proof Explorer


Theorem ancom2s

Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypothesis an12s.1
|- ( ( ph /\ ( ps /\ ch ) ) -> th )
Assertion ancom2s
|- ( ( ph /\ ( ch /\ ps ) ) -> th )

Proof

Step Hyp Ref Expression
1 an12s.1
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
2 pm3.22
 |-  ( ( ch /\ ps ) -> ( ps /\ ch ) )
3 2 1 sylan2
 |-  ( ( ph /\ ( ch /\ ps ) ) -> th )