Metamath Proof Explorer


Theorem ringidcl

Description: The unit element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ringidcl.b 𝐵 = ( Base ‘ 𝑅 )
ringidcl.u 1 = ( 1r𝑅 )
Assertion ringidcl ( 𝑅 ∈ Ring → 1𝐵 )

Proof

Step Hyp Ref Expression
1 ringidcl.b 𝐵 = ( Base ‘ 𝑅 )
2 ringidcl.u 1 = ( 1r𝑅 )
3 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
4 3 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
5 3 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
6 3 2 ringidval 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
7 5 6 mndidcl ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → 1𝐵 )
8 4 7 syl ( 𝑅 ∈ Ring → 1𝐵 )