Metamath Proof Explorer


Theorem ring0cl

Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014)

Ref Expression
Hypotheses ring0cl.b 𝐵 = ( Base ‘ 𝑅 )
ring0cl.z 0 = ( 0g𝑅 )
Assertion ring0cl ( 𝑅 ∈ Ring → 0𝐵 )

Proof

Step Hyp Ref Expression
1 ring0cl.b 𝐵 = ( Base ‘ 𝑅 )
2 ring0cl.z 0 = ( 0g𝑅 )
3 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
4 1 2 grpidcl ( 𝑅 ∈ Grp → 0𝐵 )
5 3 4 syl ( 𝑅 ∈ Ring → 0𝐵 )