Metamath Proof Explorer


Theorem ring0cl

Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014)

Ref Expression
Hypotheses ring0cl.b
|- B = ( Base ` R )
ring0cl.z
|- .0. = ( 0g ` R )
Assertion ring0cl
|- ( R e. Ring -> .0. e. B )

Proof

Step Hyp Ref Expression
1 ring0cl.b
 |-  B = ( Base ` R )
2 ring0cl.z
 |-  .0. = ( 0g ` R )
3 ringgrp
 |-  ( R e. Ring -> R e. Grp )
4 1 2 grpidcl
 |-  ( R e. Grp -> .0. e. B )
5 3 4 syl
 |-  ( R e. Ring -> .0. e. B )