Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ring0cl.b | |- B = ( Base ` R ) |
|
ring0cl.z | |- .0. = ( 0g ` R ) |
||
Assertion | ring0cl | |- ( R e. Ring -> .0. e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring0cl.b | |- B = ( Base ` R ) |
|
2 | ring0cl.z | |- .0. = ( 0g ` R ) |
|
3 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
4 | 1 2 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
5 | 3 4 | syl | |- ( R e. Ring -> .0. e. B ) |