Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ring0cl.b | |- B = ( Base ` R ) |
|
| ring0cl.z | |- .0. = ( 0g ` R ) |
||
| Assertion | ring0cl | |- ( R e. Ring -> .0. e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring0cl.b | |- B = ( Base ` R ) |
|
| 2 | ring0cl.z | |- .0. = ( 0g ` R ) |
|
| 3 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 4 | 1 2 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
| 5 | 3 4 | syl | |- ( R e. Ring -> .0. e. B ) |