Metamath Proof Explorer


Theorem ring0cl

Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014)

Ref Expression
Hypotheses ring0cl.b B = Base R
ring0cl.z 0 ˙ = 0 R
Assertion ring0cl R Ring 0 ˙ B

Proof

Step Hyp Ref Expression
1 ring0cl.b B = Base R
2 ring0cl.z 0 ˙ = 0 R
3 ringgrp R Ring R Grp
4 1 2 grpidcl R Grp 0 ˙ B
5 3 4 syl R Ring 0 ˙ B