Description: Lemma for ringlidm and ringridm . (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 27-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringidm.b | |
|
ringidm.t | |
||
ringidm.u | |
||
Assertion | ringidmlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringidm.b | |
|
2 | ringidm.t | |
|
3 | ringidm.u | |
|
4 | eqid | |
|
5 | 4 | ringmgp | |
6 | 4 1 | mgpbas | |
7 | 4 2 | mgpplusg | |
8 | 4 3 | ringidval | |
9 | 6 7 8 | mndlrid | |
10 | 5 9 | sylan | |