Metamath Proof Explorer


Theorem ringidval

Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ringidval.g G=mulGrpR
ringidval.u 1˙=1R
Assertion ringidval 1˙=0G

Proof

Step Hyp Ref Expression
1 ringidval.g G=mulGrpR
2 ringidval.u 1˙=1R
3 df-ur 1r=0𝑔mulGrp
4 3 fveq1i 1R=0𝑔mulGrpR
5 fnmgp mulGrpFnV
6 fvco2 mulGrpFnVRV0𝑔mulGrpR=0mulGrpR
7 5 6 mpan RV0𝑔mulGrpR=0mulGrpR
8 4 7 eqtrid RV1R=0mulGrpR
9 0g0 =0
10 fvprc ¬RV1R=
11 fvprc ¬RVmulGrpR=
12 11 fveq2d ¬RV0mulGrpR=0
13 9 10 12 3eqtr4a ¬RV1R=0mulGrpR
14 8 13 pm2.61i 1R=0mulGrpR
15 1 fveq2i 0G=0mulGrpR
16 14 2 15 3eqtr4i 1˙=0G