Metamath Proof Explorer


Table of Contents - 10.2. Groups

  1. Definition and basic properties
    1. cgrp
    2. cminusg
    3. csg
    4. df-grp
    5. df-minusg
    6. df-sbg
    7. isgrp
    8. grpmnd
    9. grpcl
    10. grpass
    11. grpinvex
    12. grpideu
    13. grpassd
    14. grpmndd
    15. grpcld
    16. grpplusf
    17. grpplusfo
    18. resgrpplusfrn
    19. grppropd
    20. grpprop
    21. grppropstr
    22. grpss
    23. isgrpd2e
    24. isgrpd2
    25. isgrpde
    26. isgrpd
    27. isgrpi
    28. grpsgrp
    29. grpmgmd
    30. dfgrp2
    31. dfgrp2e
    32. isgrpix
    33. grpidcl
    34. grpbn0
    35. grplid
    36. grprid
    37. grplidd
    38. grpridd
    39. grpn0
    40. hashfingrpnn
    41. grprcan
    42. grpinveu
    43. grpid
    44. isgrpid2
    45. grpidd2
    46. grpinvfval
    47. grpinvfvalALT
    48. grpinvval
    49. grpinvfn
    50. grpinvfvi
    51. grpsubfval
    52. grpsubfvalALT
    53. grpsubval
    54. grpinvf
    55. grpinvcl
    56. grpinvcld
    57. grplinv
    58. grprinv
    59. grpinvid1
    60. grpinvid2
    61. isgrpinv
    62. grplinvd
    63. grprinvd
    64. grplrinv
    65. grpidinv2
    66. grpidinv
    67. grpinvid
    68. grplcan
    69. grpasscan1
    70. grpasscan2
    71. grpidrcan
    72. grpidlcan
    73. grpinvinv
    74. grpinvcnv
    75. grpinv11
    76. grpinvf1o
    77. grpinvnz
    78. grpinvnzcl
    79. grpsubinv
    80. grplmulf1o
    81. grpraddf1o
    82. grpinvpropd
    83. grpidssd
    84. grpinvssd
    85. grpinvadd
    86. grpsubf
    87. grpsubcl
    88. grpsubrcan
    89. grpinvsub
    90. grpinvval2
    91. grpsubid
    92. grpsubid1
    93. grpsubeq0
    94. grpsubadd0sub
    95. grpsubadd
    96. grpsubsub
    97. grpaddsubass
    98. grppncan
    99. grpnpcan
    100. grpsubsub4
    101. grppnpcan2
    102. grpnpncan
    103. grpnpncan0
    104. grpnnncan2
    105. dfgrp3lem
    106. dfgrp3
    107. dfgrp3e
    108. grplactfval
    109. grplactval
    110. grplactcnv
    111. grplactf1o
    112. grpsubpropd
    113. grpsubpropd2
    114. grp1
    115. grp1inv
    116. prdsinvlem
    117. prdsgrpd
    118. prdsinvgd
    119. pwsgrp
    120. pwsinvg
    121. pwssub
    122. imasgrp2
    123. imasgrp
    124. imasgrpf1
    125. qusgrp2
    126. xpsgrp
    127. xpsinv
    128. xpsgrpsub
    129. mhmlem
    130. mhmid
    131. mhmmnd
    132. mhmfmhm
    133. ghmgrp
  2. Group multiple operation
    1. cmg
    2. df-mulg
    3. mulgfval
    4. mulgfvalALT
    5. mulgval
    6. mulgfn
    7. mulgfvi
    8. mulg0
    9. mulgnn
    10. ressmulgnn
    11. ressmulgnn0
    12. mulgnngsum
    13. mulgnn0gsum
    14. mulg1
    15. mulgnnp1
    16. mulg2
    17. mulgnegnn
    18. mulgnn0p1
    19. mulgnnsubcl
    20. mulgnn0subcl
    21. mulgsubcl
    22. mulgnncl
    23. mulgnn0cl
    24. mulgcl
    25. mulgneg
    26. mulgnegneg
    27. mulgm1
    28. mulgnn0cld
    29. mulgcld
    30. mulgaddcomlem
    31. mulgaddcom
    32. mulginvcom
    33. mulginvinv
    34. mulgnn0z
    35. mulgz
    36. mulgnndir
    37. mulgnn0dir
    38. mulgdirlem
    39. mulgdir
    40. mulgp1
    41. mulgneg2
    42. mulgnnass
    43. mulgnn0ass
    44. mulgass
    45. mulgassr
    46. mulgmodid
    47. mulgsubdir
    48. mhmmulg
    49. mulgpropd
    50. submmulgcl
    51. submmulg
    52. pwsmulg
  3. Subgroups and Quotient groups
    1. csubg
    2. cnsg
    3. cqg
    4. df-subg
    5. df-nsg
    6. df-eqg
    7. issubg
    8. subgss
    9. subgid
    10. subggrp
    11. subgbas
    12. subgrcl
    13. subg0
    14. subginv
    15. subg0cl
    16. subginvcl
    17. subgcl
    18. subgsubcl
    19. subgsub
    20. subgmulgcl
    21. subgmulg
    22. issubg2
    23. issubgrpd2
    24. issubgrpd
    25. issubg3
    26. issubg4
    27. grpissubg
    28. resgrpisgrp
    29. subgsubm
    30. subsubg
    31. subgint
    32. 0subg
    33. 0subgOLD
    34. trivsubgd
    35. trivsubgsnd
    36. isnsg
    37. isnsg2
    38. nsgbi
    39. nsgsubg
    40. nsgconj
    41. isnsg3
    42. subgacs
    43. nsgacs
    44. elnmz
    45. nmzbi
    46. nmzsubg
    47. ssnmz
    48. isnsg4
    49. nmznsg
    50. 0nsg
    51. nsgid
    52. 0idnsgd
    53. trivnsgd
    54. triv1nsgd
    55. 1nsgtrivd
    56. releqg
    57. eqgfval
    58. eqgval
    59. eqger
    60. eqglact
    61. eqgid
    62. eqgen
    63. eqgcpbl
    64. eqg0el
    65. quselbas
    66. quseccl0
    67. qusgrp
    68. quseccl
    69. qusadd
    70. qus0
    71. qusinv
    72. qussub
    73. ecqusaddd
    74. ecqusaddcl
    75. lagsubg2
    76. lagsubg
    77. eqg0subg
    78. eqg0subgecsn
    79. qus0subgbas
    80. qus0subgadd
  4. Cyclic monoids and groups
    1. cycsubmel
    2. cycsubmcl
    3. cycsubm
    4. cyccom
    5. cycsubmcom
    6. cycsubggend
    7. cycsubgcl
    8. cycsubgss
    9. cycsubg
    10. cycsubgcld
    11. cycsubg2
    12. cycsubg2cl
  5. Elementary theory of group homomorphisms
    1. cghm
    2. df-ghm
    3. reldmghm
    4. isghm
    5. isghm3
    6. ghmgrp1
    7. ghmgrp2
    8. ghmf
    9. ghmlin
    10. ghmid
    11. ghminv
    12. ghmsub
    13. isghmd
    14. ghmmhm
    15. ghmmhmb
    16. ghmmulg
    17. ghmrn
    18. 0ghm
    19. idghm
    20. resghm
    21. resghm2
    22. resghm2b
    23. ghmghmrn
    24. ghmco
    25. ghmima
    26. ghmpreima
    27. ghmeql
    28. ghmnsgima
    29. ghmnsgpreima
    30. ghmker
    31. ghmeqker
    32. pwsdiagghm
    33. f1ghm0to0
    34. ghmf1
    35. kerf1ghm
    36. ghmf1o
    37. conjghm
    38. conjsubg
    39. conjsubgen
    40. conjnmz
    41. conjnmzb
    42. conjnsg
    43. qusghm
    44. ghmpropd
  6. Isomorphisms of groups
    1. cgim
    2. cgic
    3. df-gim
    4. df-gic
    5. gimfn
    6. isgim
    7. gimf1o
    8. gimghm
    9. isgim2
    10. subggim
    11. gimcnv
    12. gimco
    13. gim0to0
    14. brgic
    15. brgici
    16. gicref
    17. giclcl
    18. gicrcl
    19. gicsym
    20. gictr
    21. gicer
    22. gicen
    23. gicsubgen
    24. The first isomorphism theorem of groups
  7. Group actions
    1. cga
    2. df-ga
    3. isga
    4. gagrp
    5. gaset
    6. gagrpid
    7. gaf
    8. gafo
    9. gaass
    10. ga0
    11. gaid
    12. subgga
    13. gass
    14. gasubg
    15. gaid2
    16. galcan
    17. gacan
    18. gapm
    19. gaorb
    20. gaorber
    21. gastacl
    22. gastacos
    23. orbstafun
    24. orbstaval
    25. orbsta
    26. orbsta2
  8. Centralizers and centers
    1. ccntz
    2. ccntr
    3. df-cntz
    4. df-cntr
    5. cntrval
    6. cntzfval
    7. cntzval
    8. elcntz
    9. cntzel
    10. cntzsnval
    11. elcntzsn
    12. sscntz
    13. cntzrcl
    14. cntzssv
    15. cntzi
    16. elcntr
    17. cntrss
    18. cntri
    19. resscntz
    20. cntzsgrpcl
    21. cntz2ss
    22. cntzrec
    23. cntziinsn
    24. cntzsubm
    25. cntzsubg
    26. cntzidss
    27. cntzmhm
    28. cntzmhm2
    29. cntrsubgnsg
    30. cntrnsg
  9. The opposite group
    1. coppg
    2. df-oppg
    3. oppgval
    4. oppgplusfval
    5. oppgplus
    6. setsplusg
    7. oppglemOLD
    8. oppgbas
    9. oppgbasOLD
    10. oppgtset
    11. oppgtsetOLD
    12. oppgtopn
    13. oppgmnd
    14. oppgmndb
    15. oppgid
    16. oppggrp
    17. oppggrpb
    18. oppginv
    19. invoppggim
    20. oppggic
    21. oppgsubm
    22. oppgsubg
    23. oppgcntz
    24. oppgcntr
    25. gsumwrev
  10. Symmetric groups
    1. Definition and basic properties
    2. Cayley's theorem
    3. Permutations fixing one element
    4. Transpositions in the symmetric group
    5. The sign of a permutation
  11. p-Groups and Sylow groups; Sylow's theorems
    1. cod
    2. cgex
    3. cpgp
    4. cslw
    5. df-od
    6. df-gex
    7. df-pgp
    8. df-slw
    9. odfval
    10. odfvalALT
    11. odval
    12. odlem1
    13. odcl
    14. odf
    15. odid
    16. odlem2
    17. odmodnn0
    18. mndodconglem
    19. mndodcong
    20. mndodcongi
    21. oddvdsnn0
    22. odnncl
    23. odmod
    24. oddvds
    25. oddvdsi
    26. odcong
    27. odeq
    28. odval2
    29. odcld
    30. odm1inv
    31. odmulgid
    32. odmulg2
    33. odmulg
    34. odmulgeq
    35. odbezout
    36. od1
    37. odeq1
    38. odinv
    39. odf1
    40. odinf
    41. dfod2
    42. odcl2
    43. oddvds2
    44. finodsubmsubg
    45. 0subgALT
    46. submod
    47. subgod
    48. odsubdvds
    49. odf1o1
    50. odf1o2
    51. odhash
    52. odhash2
    53. odhash3
    54. odngen
    55. gexval
    56. gexlem1
    57. gexcl
    58. gexid
    59. gexlem2
    60. gexdvdsi
    61. gexdvds
    62. gexdvds2
    63. gexod
    64. gexcl3
    65. gexnnod
    66. gexcl2
    67. gexdvds3
    68. gex1
    69. ispgp
    70. pgpprm
    71. pgpgrp
    72. pgpfi1
    73. pgp0
    74. subgpgp
    75. sylow1lem1
    76. sylow1lem2
    77. sylow1lem3
    78. sylow1lem4
    79. sylow1lem5
    80. sylow1
    81. odcau
    82. pgpfi
    83. pgpfi2
    84. pgphash
    85. isslw
    86. slwprm
    87. slwsubg
    88. slwispgp
    89. slwpss
    90. slwpgp
    91. pgpssslw
    92. slwn0
    93. subgslw
    94. sylow2alem1
    95. sylow2alem2
    96. sylow2a
    97. sylow2blem1
    98. sylow2blem2
    99. sylow2blem3
    100. sylow2b
    101. slwhash
    102. fislw
    103. sylow2
    104. sylow3lem1
    105. sylow3lem2
    106. sylow3lem3
    107. sylow3lem4
    108. sylow3lem5
    109. sylow3lem6
    110. sylow3
  12. Direct products
    1. clsm
    2. cpj1
    3. df-lsm
    4. df-pj1
    5. lsmfval
    6. lsmvalx
    7. lsmelvalx
    8. lsmelvalix
    9. oppglsm
    10. lsmssv
    11. lsmless1x
    12. lsmless2x
    13. lsmub1x
    14. lsmub2x
    15. lsmval
    16. lsmelval
    17. lsmelvali
    18. lsmelvalm
    19. lsmelvalmi
    20. lsmsubm
    21. lsmsubg
    22. lsmcom2
    23. Direct products (extension)
  13. Free groups
    1. cefg
    2. cfrgp
    3. cvrgp
    4. df-efg
    5. df-frgp
    6. df-vrgp
    7. efgmval
    8. efgmf
    9. efgmnvl
    10. efgrcl
    11. efglem
    12. efgval
    13. efger
    14. efgi
    15. efgi0
    16. efgi1
    17. efgtf
    18. efgtval
    19. efgval2
    20. efgi2
    21. efgtlen
    22. efginvrel2
    23. efginvrel1
    24. efgsf
    25. efgsdm
    26. efgsval
    27. efgsdmi
    28. efgsval2
    29. efgsrel
    30. efgs1
    31. efgs1b
    32. efgsp1
    33. efgsres
    34. efgsfo
    35. efgredlema
    36. efgredlemf
    37. efgredlemg
    38. efgredleme
    39. efgredlemd
    40. efgredlemc
    41. efgredlemb
    42. efgredlem
    43. efgred
    44. efgrelexlema
    45. efgrelexlemb
    46. efgrelex
    47. efgredeu
    48. efgred2
    49. efgcpbllema
    50. efgcpbllemb
    51. efgcpbl
    52. efgcpbl2
    53. frgpval
    54. frgpcpbl
    55. frgp0
    56. frgpeccl
    57. frgpgrp
    58. frgpadd
    59. frgpinv
    60. frgpmhm
    61. vrgpfval
    62. vrgpval
    63. vrgpf
    64. vrgpinv
    65. frgpuptf
    66. frgpuptinv
    67. frgpuplem
    68. frgpupf
    69. frgpupval
    70. frgpup1
    71. frgpup2
    72. frgpup3lem
    73. frgpup3
    74. 0frgp
  14. Abelian groups
    1. Definition and basic properties
    2. Cyclic groups
    3. Group sum operation
    4. Group sums over (ranges of) integers
    5. Internal direct products
    6. The Fundamental Theorem of Abelian Groups
  15. Simple groups
    1. Definition and basic properties
    2. Classification of abelian simple groups