Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringlghm.b | |
|
ringlghm.t | |
||
Assertion | ringlghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlghm.b | |
|
2 | ringlghm.t | |
|
3 | eqid | |
|
4 | ringgrp | |
|
5 | 4 | adantr | |
6 | 1 2 | ringcl | |
7 | 6 | 3expa | |
8 | 7 | fmpttd | |
9 | 3anass | |
|
10 | 1 3 2 | ringdi | |
11 | 9 10 | sylan2br | |
12 | 11 | anassrs | |
13 | 1 3 | ringacl | |
14 | 13 | 3expb | |
15 | 14 | adantlr | |
16 | oveq2 | |
|
17 | eqid | |
|
18 | ovex | |
|
19 | 16 17 18 | fvmpt | |
20 | 15 19 | syl | |
21 | oveq2 | |
|
22 | ovex | |
|
23 | 21 17 22 | fvmpt | |
24 | oveq2 | |
|
25 | ovex | |
|
26 | 24 17 25 | fvmpt | |
27 | 23 26 | oveqan12d | |
28 | 27 | adantl | |
29 | 12 20 28 | 3eqtr4d | |
30 | 1 1 3 3 5 5 8 29 | isghmd | |