Metamath Proof Explorer


Theorem ringlghm

Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses ringlghm.b B=BaseR
ringlghm.t ·˙=R
Assertion ringlghm RRingXBxBX·˙xRGrpHomR

Proof

Step Hyp Ref Expression
1 ringlghm.b B=BaseR
2 ringlghm.t ·˙=R
3 eqid +R=+R
4 ringgrp RRingRGrp
5 4 adantr RRingXBRGrp
6 1 2 ringcl RRingXBxBX·˙xB
7 6 3expa RRingXBxBX·˙xB
8 7 fmpttd RRingXBxBX·˙x:BB
9 3anass XByBzBXByBzB
10 1 3 2 ringdi RRingXByBzBX·˙y+Rz=X·˙y+RX·˙z
11 9 10 sylan2br RRingXByBzBX·˙y+Rz=X·˙y+RX·˙z
12 11 anassrs RRingXByBzBX·˙y+Rz=X·˙y+RX·˙z
13 1 3 ringacl RRingyBzBy+RzB
14 13 3expb RRingyBzBy+RzB
15 14 adantlr RRingXByBzBy+RzB
16 oveq2 x=y+RzX·˙x=X·˙y+Rz
17 eqid xBX·˙x=xBX·˙x
18 ovex X·˙y+RzV
19 16 17 18 fvmpt y+RzBxBX·˙xy+Rz=X·˙y+Rz
20 15 19 syl RRingXByBzBxBX·˙xy+Rz=X·˙y+Rz
21 oveq2 x=yX·˙x=X·˙y
22 ovex X·˙yV
23 21 17 22 fvmpt yBxBX·˙xy=X·˙y
24 oveq2 x=zX·˙x=X·˙z
25 ovex X·˙zV
26 24 17 25 fvmpt zBxBX·˙xz=X·˙z
27 23 26 oveqan12d yBzBxBX·˙xy+RxBX·˙xz=X·˙y+RX·˙z
28 27 adantl RRingXByBzBxBX·˙xy+RxBX·˙xz=X·˙y+RX·˙z
29 12 20 28 3eqtr4d RRingXByBzBxBX·˙xy+Rz=xBX·˙xy+RxBX·˙xz
30 1 1 3 3 5 5 8 29 isghmd RRingXBxBX·˙xRGrpHomR