Metamath Proof Explorer


Theorem ringdi

Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007)

Ref Expression
Hypotheses ringdi.b B=BaseR
ringdi.p +˙=+R
ringdi.t ·˙=R
Assertion ringdi RRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙Z

Proof

Step Hyp Ref Expression
1 ringdi.b B=BaseR
2 ringdi.p +˙=+R
3 ringdi.t ·˙=R
4 1 2 3 ringdilem RRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙ZX+˙Y·˙Z=X·˙Z+˙Y·˙Z
5 4 simpld RRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙Z