Metamath Proof Explorer


Theorem ringdi

Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007)

Ref Expression
Hypotheses ringdi.b B = Base R
ringdi.p + ˙ = + R
ringdi.t · ˙ = R
Assertion ringdi R Ring X B Y B Z B X · ˙ Y + ˙ Z = X · ˙ Y + ˙ X · ˙ Z

Proof

Step Hyp Ref Expression
1 ringdi.b B = Base R
2 ringdi.p + ˙ = + R
3 ringdi.t · ˙ = R
4 1 2 3 ringi R Ring X B Y B Z B X · ˙ Y + ˙ Z = X · ˙ Y + ˙ X · ˙ Z X + ˙ Y · ˙ Z = X · ˙ Z + ˙ Y · ˙ Z
5 4 simpld R Ring X B Y B Z B X · ˙ Y + ˙ Z = X · ˙ Y + ˙ X · ˙ Z