Metamath Proof Explorer


Theorem ringdilem

Description: Properties of a unital ring. (Contributed by NM, 26-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses ringdilem.b B=BaseR
ringdilem.p +˙=+R
ringdilem.t ·˙=R
Assertion ringdilem RRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙ZX+˙Y·˙Z=X·˙Z+˙Y·˙Z

Proof

Step Hyp Ref Expression
1 ringdilem.b B=BaseR
2 ringdilem.p +˙=+R
3 ringdilem.t ·˙=R
4 eqid mulGrpR=mulGrpR
5 1 4 2 3 isring RRingRGrpmulGrpRMndxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
6 5 simp3bi RRingxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
7 6 adantr RRingxByBzBxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
8 simpr1 RRingxByBzBxB
9 rsp xByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙zxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
10 7 8 9 sylc RRingxByBzByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
11 simpr2 RRingxByBzByB
12 rsp yBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙zyBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
13 10 11 12 sylc RRingxByBzBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
14 simpr3 RRingxByBzBzB
15 rsp zBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙zzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
16 13 14 15 sylc RRingxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
17 16 simpld RRingxByBzBx·˙y+˙z=x·˙y+˙x·˙z
18 17 caovdig RRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙Z
19 16 simprd RRingxByBzBx+˙y·˙z=x·˙z+˙y·˙z
20 19 caovdirg RRingXBYBZBX+˙Y·˙Z=X·˙Z+˙Y·˙Z
21 18 20 jca RRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙ZX+˙Y·˙Z=X·˙Z+˙Y·˙Z