Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringlghm.b | |
|
ringlghm.t | |
||
Assertion | ringrghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlghm.b | |
|
2 | ringlghm.t | |
|
3 | eqid | |
|
4 | ringgrp | |
|
5 | 4 | adantr | |
6 | 1 2 | ringcl | |
7 | 6 | 3expa | |
8 | 7 | an32s | |
9 | 8 | fmpttd | |
10 | df-3an | |
|
11 | 1 3 2 | ringdir | |
12 | 10 11 | sylan2br | |
13 | 12 | anass1rs | |
14 | 1 3 | ringacl | |
15 | 14 | 3expb | |
16 | 15 | adantlr | |
17 | oveq1 | |
|
18 | eqid | |
|
19 | ovex | |
|
20 | 17 18 19 | fvmpt | |
21 | 16 20 | syl | |
22 | oveq1 | |
|
23 | ovex | |
|
24 | 22 18 23 | fvmpt | |
25 | oveq1 | |
|
26 | ovex | |
|
27 | 25 18 26 | fvmpt | |
28 | 24 27 | oveqan12d | |
29 | 28 | adantl | |
30 | 13 21 29 | 3eqtr4d | |
31 | 1 1 3 3 5 5 9 30 | isghmd | |