Metamath Proof Explorer


Theorem ringrghm

Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses ringlghm.b B=BaseR
ringlghm.t ·˙=R
Assertion ringrghm RRingXBxBx·˙XRGrpHomR

Proof

Step Hyp Ref Expression
1 ringlghm.b B=BaseR
2 ringlghm.t ·˙=R
3 eqid +R=+R
4 ringgrp RRingRGrp
5 4 adantr RRingXBRGrp
6 1 2 ringcl RRingxBXBx·˙XB
7 6 3expa RRingxBXBx·˙XB
8 7 an32s RRingXBxBx·˙XB
9 8 fmpttd RRingXBxBx·˙X:BB
10 df-3an yBzBXByBzBXB
11 1 3 2 ringdir RRingyBzBXBy+Rz·˙X=y·˙X+Rz·˙X
12 10 11 sylan2br RRingyBzBXBy+Rz·˙X=y·˙X+Rz·˙X
13 12 anass1rs RRingXByBzBy+Rz·˙X=y·˙X+Rz·˙X
14 1 3 ringacl RRingyBzBy+RzB
15 14 3expb RRingyBzBy+RzB
16 15 adantlr RRingXByBzBy+RzB
17 oveq1 x=y+Rzx·˙X=y+Rz·˙X
18 eqid xBx·˙X=xBx·˙X
19 ovex y+Rz·˙XV
20 17 18 19 fvmpt y+RzBxBx·˙Xy+Rz=y+Rz·˙X
21 16 20 syl RRingXByBzBxBx·˙Xy+Rz=y+Rz·˙X
22 oveq1 x=yx·˙X=y·˙X
23 ovex y·˙XV
24 22 18 23 fvmpt yBxBx·˙Xy=y·˙X
25 oveq1 x=zx·˙X=z·˙X
26 ovex z·˙XV
27 25 18 26 fvmpt zBxBx·˙Xz=z·˙X
28 24 27 oveqan12d yBzBxBx·˙Xy+RxBx·˙Xz=y·˙X+Rz·˙X
29 28 adantl RRingXByBzBxBx·˙Xy+RxBx·˙Xz=y·˙X+Rz·˙X
30 13 21 29 3eqtr4d RRingXByBzBxBx·˙Xy+Rz=xBx·˙Xy+RxBx·˙Xz
31 1 1 3 3 5 5 9 30 isghmd RRingXBxBx·˙XRGrpHomR