Metamath Proof Explorer


Theorem dvr1

Description: A ring element divided by the ring unity is itself. ( div1 analog.) (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses dvr1.b B=BaseR
dvr1.d ×˙=/rR
dvr1.o 1˙=1R
Assertion dvr1 RRingXBX×˙1˙=X

Proof

Step Hyp Ref Expression
1 dvr1.b B=BaseR
2 dvr1.d ×˙=/rR
3 dvr1.o 1˙=1R
4 id XBXB
5 eqid UnitR=UnitR
6 5 3 1unit RRing1˙UnitR
7 eqid R=R
8 eqid invrR=invrR
9 1 7 5 8 2 dvrval XB1˙UnitRX×˙1˙=XRinvrR1˙
10 4 6 9 syl2anr RRingXBX×˙1˙=XRinvrR1˙
11 8 3 1rinv RRinginvrR1˙=1˙
12 11 adantr RRingXBinvrR1˙=1˙
13 12 oveq2d RRingXBXRinvrR1˙=XR1˙
14 1 7 3 ringridm RRingXBXR1˙=X
15 10 13 14 3eqtrd RRingXBX×˙1˙=X