Metamath Proof Explorer


Theorem dvr1

Description: A cancellation law for division. ( div1 analog.) (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses dvr1.b 𝐵 = ( Base ‘ 𝑅 )
dvr1.d / = ( /r𝑅 )
dvr1.o 1 = ( 1r𝑅 )
Assertion dvr1 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 𝑋 / 1 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 dvr1.b 𝐵 = ( Base ‘ 𝑅 )
2 dvr1.d / = ( /r𝑅 )
3 dvr1.o 1 = ( 1r𝑅 )
4 id ( 𝑋𝐵𝑋𝐵 )
5 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
6 5 3 1unit ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) )
7 eqid ( .r𝑅 ) = ( .r𝑅 )
8 eqid ( invr𝑅 ) = ( invr𝑅 )
9 1 7 5 8 2 dvrval ( ( 𝑋𝐵1 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 / 1 ) = ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 1 ) ) )
10 4 6 9 syl2anr ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 𝑋 / 1 ) = ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 1 ) ) )
11 8 3 1rinv ( 𝑅 ∈ Ring → ( ( invr𝑅 ) ‘ 1 ) = 1 )
12 11 adantr ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( ( invr𝑅 ) ‘ 1 ) = 1 )
13 12 oveq2d ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 1 ) ) = ( 𝑋 ( .r𝑅 ) 1 ) )
14 1 7 3 ringridm ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 𝑋 ( .r𝑅 ) 1 ) = 𝑋 )
15 10 13 14 3eqtrd ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 𝑋 / 1 ) = 𝑋 )