Metamath Proof Explorer
Description: The unit element of a ring is a right multiplicative identity.
(Contributed by NM, 15-Sep-2011)
|
|
Ref |
Expression |
|
Hypotheses |
rngidm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
rngidm.t |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
rngidm.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
|
Assertion |
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 1 ) = 𝑋 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rngidm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rngidm.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
rngidm.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
1 2 3
|
ringidmlem |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 1 ) = 𝑋 ) ) |
5 |
4
|
simprd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 1 ) = 𝑋 ) |