Metamath Proof Explorer


Theorem 1rinv

Description: The inverse of the ring unity is the ring unity. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses 1rinv.1 I=invrR
1rinv.2 1˙=1R
Assertion 1rinv RRingI1˙=1˙

Proof

Step Hyp Ref Expression
1 1rinv.1 I=invrR
2 1rinv.2 1˙=1R
3 eqid UnitR=UnitR
4 3 2 1unit RRing1˙UnitR
5 eqid BaseR=BaseR
6 3 1 5 ringinvcl RRing1˙UnitRI1˙BaseR
7 4 6 mpdan RRingI1˙BaseR
8 eqid R=R
9 5 8 2 ringlidm RRingI1˙BaseR1˙RI1˙=I1˙
10 7 9 mpdan RRing1˙RI1˙=I1˙
11 3 1 8 2 unitrinv RRing1˙UnitR1˙RI1˙=1˙
12 4 11 mpdan RRing1˙RI1˙=1˙
13 10 12 eqtr3d RRingI1˙=1˙