Metamath Proof Explorer


Theorem 0unit

Description: The additive identity is a unit if and only if 1 = 0 , i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses 0unit.1 U=UnitR
0unit.2 0˙=0R
0unit.3 1˙=1R
Assertion 0unit RRing0˙U1˙=0˙

Proof

Step Hyp Ref Expression
1 0unit.1 U=UnitR
2 0unit.2 0˙=0R
3 0unit.3 1˙=1R
4 eqid invrR=invrR
5 eqid R=R
6 1 4 5 3 unitrinv RRing0˙U0˙RinvrR0˙=1˙
7 eqid BaseR=BaseR
8 1 4 7 ringinvcl RRing0˙UinvrR0˙BaseR
9 7 5 2 ringlz RRinginvrR0˙BaseR0˙RinvrR0˙=0˙
10 8 9 syldan RRing0˙U0˙RinvrR0˙=0˙
11 6 10 eqtr3d RRing0˙U1˙=0˙
12 simpr RRing1˙=0˙1˙=0˙
13 1 3 1unit RRing1˙U
14 13 adantr RRing1˙=0˙1˙U
15 12 14 eqeltrrd RRing1˙=0˙0˙U
16 11 15 impbida RRing0˙U1˙=0˙