Description: The additive identity is a unit if and only if 1 = 0 , i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0unit.1 | |
|
0unit.2 | |
||
0unit.3 | |
||
Assertion | 0unit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0unit.1 | |
|
2 | 0unit.2 | |
|
3 | 0unit.3 | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1 4 5 3 | unitrinv | |
7 | eqid | |
|
8 | 1 4 7 | ringinvcl | |
9 | 7 5 2 | ringlz | |
10 | 8 9 | syldan | |
11 | 6 10 | eqtr3d | |
12 | simpr | |
|
13 | 1 3 | 1unit | |
14 | 13 | adantr | |
15 | 12 14 | eqeltrrd | |
16 | 11 15 | impbida | |