Metamath Proof Explorer


Theorem 0unit

Description: The additive identity is a unit if and only if 1 = 0 , i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses 0unit.1
|- U = ( Unit ` R )
0unit.2
|- .0. = ( 0g ` R )
0unit.3
|- .1. = ( 1r ` R )
Assertion 0unit
|- ( R e. Ring -> ( .0. e. U <-> .1. = .0. ) )

Proof

Step Hyp Ref Expression
1 0unit.1
 |-  U = ( Unit ` R )
2 0unit.2
 |-  .0. = ( 0g ` R )
3 0unit.3
 |-  .1. = ( 1r ` R )
4 eqid
 |-  ( invr ` R ) = ( invr ` R )
5 eqid
 |-  ( .r ` R ) = ( .r ` R )
6 1 4 5 3 unitrinv
 |-  ( ( R e. Ring /\ .0. e. U ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .1. )
7 eqid
 |-  ( Base ` R ) = ( Base ` R )
8 1 4 7 ringinvcl
 |-  ( ( R e. Ring /\ .0. e. U ) -> ( ( invr ` R ) ` .0. ) e. ( Base ` R ) )
9 7 5 2 ringlz
 |-  ( ( R e. Ring /\ ( ( invr ` R ) ` .0. ) e. ( Base ` R ) ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .0. )
10 8 9 syldan
 |-  ( ( R e. Ring /\ .0. e. U ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .0. )
11 6 10 eqtr3d
 |-  ( ( R e. Ring /\ .0. e. U ) -> .1. = .0. )
12 simpr
 |-  ( ( R e. Ring /\ .1. = .0. ) -> .1. = .0. )
13 1 3 1unit
 |-  ( R e. Ring -> .1. e. U )
14 13 adantr
 |-  ( ( R e. Ring /\ .1. = .0. ) -> .1. e. U )
15 12 14 eqeltrrd
 |-  ( ( R e. Ring /\ .1. = .0. ) -> .0. e. U )
16 11 15 impbida
 |-  ( R e. Ring -> ( .0. e. U <-> .1. = .0. ) )