Step |
Hyp |
Ref |
Expression |
1 |
|
rngz.b |
|- B = ( Base ` R ) |
2 |
|
rngz.t |
|- .x. = ( .r ` R ) |
3 |
|
rngz.z |
|- .0. = ( 0g ` R ) |
4 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
5 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
6 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
7 |
1 6 3
|
grplid |
|- ( ( R e. Grp /\ .0. e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
8 |
4 5 7
|
syl2anc2 |
|- ( R e. Ring -> ( .0. ( +g ` R ) .0. ) = .0. ) |
9 |
8
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
10 |
9
|
oveq1d |
|- ( ( R e. Ring /\ X e. B ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( .0. .x. X ) ) |
11 |
4 5
|
syl |
|- ( R e. Ring -> .0. e. B ) |
12 |
11
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> .0. e. B ) |
13 |
|
simpr |
|- ( ( R e. Ring /\ X e. B ) -> X e. B ) |
14 |
12 12 13
|
3jca |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. e. B /\ .0. e. B /\ X e. B ) ) |
15 |
1 6 2
|
ringdir |
|- ( ( R e. Ring /\ ( .0. e. B /\ .0. e. B /\ X e. B ) ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) ) |
16 |
14 15
|
syldan |
|- ( ( R e. Ring /\ X e. B ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) ) |
17 |
4
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> R e. Grp ) |
18 |
|
simpl |
|- ( ( R e. Ring /\ X e. B ) -> R e. Ring ) |
19 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ .0. e. B /\ X e. B ) -> ( .0. .x. X ) e. B ) |
20 |
18 12 13 19
|
syl3anc |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. .x. X ) e. B ) |
21 |
1 6 3
|
grprid |
|- ( ( R e. Grp /\ ( .0. .x. X ) e. B ) -> ( ( .0. .x. X ) ( +g ` R ) .0. ) = ( .0. .x. X ) ) |
22 |
21
|
eqcomd |
|- ( ( R e. Grp /\ ( .0. .x. X ) e. B ) -> ( .0. .x. X ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) ) |
23 |
17 20 22
|
syl2anc |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. .x. X ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) ) |
24 |
10 16 23
|
3eqtr3d |
|- ( ( R e. Ring /\ X e. B ) -> ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) ) |
25 |
1 6
|
grplcan |
|- ( ( R e. Grp /\ ( ( .0. .x. X ) e. B /\ .0. e. B /\ ( .0. .x. X ) e. B ) ) -> ( ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) <-> ( .0. .x. X ) = .0. ) ) |
26 |
17 20 12 20 25
|
syl13anc |
|- ( ( R e. Ring /\ X e. B ) -> ( ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) <-> ( .0. .x. X ) = .0. ) ) |
27 |
24 26
|
mpbid |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. .x. X ) = .0. ) |