| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcl.b |
|- B = ( Base ` R ) |
| 2 |
|
rngcl.t |
|- .x. = ( .r ` R ) |
| 3 |
|
rnglz.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
| 5 |
|
ablgrp |
|- ( R e. Abel -> R e. Grp ) |
| 6 |
4 5
|
syl |
|- ( R e. Rng -> R e. Grp ) |
| 7 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
| 8 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 9 |
1 8 3
|
grplid |
|- ( ( R e. Grp /\ .0. e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 10 |
6 7 9
|
syl2anc2 |
|- ( R e. Rng -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 11 |
10
|
adantr |
|- ( ( R e. Rng /\ X e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 12 |
11
|
oveq1d |
|- ( ( R e. Rng /\ X e. B ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( .0. .x. X ) ) |
| 13 |
|
simpl |
|- ( ( R e. Rng /\ X e. B ) -> R e. Rng ) |
| 14 |
6 7
|
syl |
|- ( R e. Rng -> .0. e. B ) |
| 15 |
14 14
|
jca |
|- ( R e. Rng -> ( .0. e. B /\ .0. e. B ) ) |
| 16 |
15
|
anim1i |
|- ( ( R e. Rng /\ X e. B ) -> ( ( .0. e. B /\ .0. e. B ) /\ X e. B ) ) |
| 17 |
|
df-3an |
|- ( ( .0. e. B /\ .0. e. B /\ X e. B ) <-> ( ( .0. e. B /\ .0. e. B ) /\ X e. B ) ) |
| 18 |
16 17
|
sylibr |
|- ( ( R e. Rng /\ X e. B ) -> ( .0. e. B /\ .0. e. B /\ X e. B ) ) |
| 19 |
1 8 2
|
rngdir |
|- ( ( R e. Rng /\ ( .0. e. B /\ .0. e. B /\ X e. B ) ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) ) |
| 20 |
13 18 19
|
syl2anc |
|- ( ( R e. Rng /\ X e. B ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) ) |
| 21 |
6
|
adantr |
|- ( ( R e. Rng /\ X e. B ) -> R e. Grp ) |
| 22 |
14
|
adantr |
|- ( ( R e. Rng /\ X e. B ) -> .0. e. B ) |
| 23 |
|
simpr |
|- ( ( R e. Rng /\ X e. B ) -> X e. B ) |
| 24 |
1 2
|
rngcl |
|- ( ( R e. Rng /\ .0. e. B /\ X e. B ) -> ( .0. .x. X ) e. B ) |
| 25 |
13 22 23 24
|
syl3anc |
|- ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) e. B ) |
| 26 |
1 8 3
|
grprid |
|- ( ( R e. Grp /\ ( .0. .x. X ) e. B ) -> ( ( .0. .x. X ) ( +g ` R ) .0. ) = ( .0. .x. X ) ) |
| 27 |
26
|
eqcomd |
|- ( ( R e. Grp /\ ( .0. .x. X ) e. B ) -> ( .0. .x. X ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) ) |
| 28 |
21 25 27
|
syl2anc |
|- ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) ) |
| 29 |
12 20 28
|
3eqtr3d |
|- ( ( R e. Rng /\ X e. B ) -> ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) ) |
| 30 |
1 8
|
grplcan |
|- ( ( R e. Grp /\ ( ( .0. .x. X ) e. B /\ .0. e. B /\ ( .0. .x. X ) e. B ) ) -> ( ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) <-> ( .0. .x. X ) = .0. ) ) |
| 31 |
21 25 22 25 30
|
syl13anc |
|- ( ( R e. Rng /\ X e. B ) -> ( ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) <-> ( .0. .x. X ) = .0. ) ) |
| 32 |
29 31
|
mpbid |
|- ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) = .0. ) |