Metamath Proof Explorer


Theorem grprid

Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011)

Ref Expression
Hypotheses grpbn0.b
|- B = ( Base ` G )
grplid.p
|- .+ = ( +g ` G )
grplid.o
|- .0. = ( 0g ` G )
Assertion grprid
|- ( ( G e. Grp /\ X e. B ) -> ( X .+ .0. ) = X )

Proof

Step Hyp Ref Expression
1 grpbn0.b
 |-  B = ( Base ` G )
2 grplid.p
 |-  .+ = ( +g ` G )
3 grplid.o
 |-  .0. = ( 0g ` G )
4 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
5 1 2 3 mndrid
 |-  ( ( G e. Mnd /\ X e. B ) -> ( X .+ .0. ) = X )
6 4 5 sylan
 |-  ( ( G e. Grp /\ X e. B ) -> ( X .+ .0. ) = X )