Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpbn0.b | |- B = ( Base ` G ) |
|
grplid.p | |- .+ = ( +g ` G ) |
||
grplid.o | |- .0. = ( 0g ` G ) |
||
Assertion | grprid | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ .0. ) = X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpbn0.b | |- B = ( Base ` G ) |
|
2 | grplid.p | |- .+ = ( +g ` G ) |
|
3 | grplid.o | |- .0. = ( 0g ` G ) |
|
4 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
5 | 1 2 3 | mndrid | |- ( ( G e. Mnd /\ X e. B ) -> ( X .+ .0. ) = X ) |
6 | 4 5 | sylan | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ .0. ) = X ) |