Step |
Hyp |
Ref |
Expression |
1 |
|
rngz.b |
|- B = ( Base ` R ) |
2 |
|
rngz.t |
|- .x. = ( .r ` R ) |
3 |
|
rngz.z |
|- .0. = ( 0g ` R ) |
4 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
5 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
6 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
7 |
1 6 3
|
grplid |
|- ( ( R e. Grp /\ .0. e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
8 |
4 5 7
|
syl2anc2 |
|- ( R e. Ring -> ( .0. ( +g ` R ) .0. ) = .0. ) |
9 |
8
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
10 |
9
|
oveq2d |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. ( .0. ( +g ` R ) .0. ) ) = ( X .x. .0. ) ) |
11 |
|
simpr |
|- ( ( R e. Ring /\ X e. B ) -> X e. B ) |
12 |
4 5
|
syl |
|- ( R e. Ring -> .0. e. B ) |
13 |
12
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> .0. e. B ) |
14 |
11 13 13
|
3jca |
|- ( ( R e. Ring /\ X e. B ) -> ( X e. B /\ .0. e. B /\ .0. e. B ) ) |
15 |
1 6 2
|
ringdi |
|- ( ( R e. Ring /\ ( X e. B /\ .0. e. B /\ .0. e. B ) ) -> ( X .x. ( .0. ( +g ` R ) .0. ) ) = ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) ) |
16 |
14 15
|
syldan |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. ( .0. ( +g ` R ) .0. ) ) = ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) ) |
17 |
4
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> R e. Grp ) |
18 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ .0. e. B ) -> ( X .x. .0. ) e. B ) |
19 |
13 18
|
mpd3an3 |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) e. B ) |
20 |
1 6 3
|
grplid |
|- ( ( R e. Grp /\ ( X .x. .0. ) e. B ) -> ( .0. ( +g ` R ) ( X .x. .0. ) ) = ( X .x. .0. ) ) |
21 |
20
|
eqcomd |
|- ( ( R e. Grp /\ ( X .x. .0. ) e. B ) -> ( X .x. .0. ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) ) |
22 |
17 19 21
|
syl2anc |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) ) |
23 |
10 16 22
|
3eqtr3d |
|- ( ( R e. Ring /\ X e. B ) -> ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) ) |
24 |
1 6
|
grprcan |
|- ( ( R e. Grp /\ ( ( X .x. .0. ) e. B /\ .0. e. B /\ ( X .x. .0. ) e. B ) ) -> ( ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) <-> ( X .x. .0. ) = .0. ) ) |
25 |
17 19 13 19 24
|
syl13anc |
|- ( ( R e. Ring /\ X e. B ) -> ( ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) <-> ( X .x. .0. ) = .0. ) ) |
26 |
23 25
|
mpbid |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |