Step |
Hyp |
Ref |
Expression |
1 |
|
rngz.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rngz.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
rngz.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
5 |
1 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
7 |
1 6 3
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
8 |
4 5 7
|
syl2anc2 |
⊢ ( 𝑅 ∈ Ring → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
10 |
9
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 0 ( +g ‘ 𝑅 ) 0 ) ) = ( 𝑋 · 0 ) ) |
11 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
12 |
4 5
|
syl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
13 |
12
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
14 |
11 13 13
|
3jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) |
15 |
1 6 2
|
ringdi |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) → ( 𝑋 · ( 0 ( +g ‘ 𝑅 ) 0 ) ) = ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
16 |
14 15
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 0 ( +g ‘ 𝑅 ) 0 ) ) = ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
17 |
4
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
18 |
1 2
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 · 0 ) ∈ 𝐵 ) |
19 |
13 18
|
mpd3an3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) ∈ 𝐵 ) |
20 |
1 6 3
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 · 0 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) = ( 𝑋 · 0 ) ) |
21 |
20
|
eqcomd |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 · 0 ) ∈ 𝐵 ) → ( 𝑋 · 0 ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
22 |
17 19 21
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
23 |
10 16 22
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
24 |
1 6
|
grprcan |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 𝑋 · 0 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 𝑋 · 0 ) ∈ 𝐵 ) ) → ( ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ↔ ( 𝑋 · 0 ) = 0 ) ) |
25 |
17 19 13 19 24
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ↔ ( 𝑋 · 0 ) = 0 ) ) |
26 |
23 25
|
mpbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |