Metamath Proof Explorer


Theorem ringrz

Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009) (Proof shortened by AV, 30-Mar-2025)

Ref Expression
Hypotheses ringz.b B=BaseR
ringz.t ·˙=R
ringz.z 0˙=0R
Assertion ringrz RRingXBX·˙0˙=0˙

Proof

Step Hyp Ref Expression
1 ringz.b B=BaseR
2 ringz.t ·˙=R
3 ringz.z 0˙=0R
4 ringrng RRingRRng
5 1 2 3 rngrz RRngXBX·˙0˙=0˙
6 4 5 sylan RRingXBX·˙0˙=0˙