Metamath Proof Explorer


Theorem rngrz

Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by AV, 16-Feb-2025)

Ref Expression
Hypotheses rngcl.b B=BaseR
rngcl.t ·˙=R
rnglz.z 0˙=0R
Assertion rngrz RRngXBX·˙0˙=0˙

Proof

Step Hyp Ref Expression
1 rngcl.b B=BaseR
2 rngcl.t ·˙=R
3 rnglz.z 0˙=0R
4 rnggrp RRngRGrp
5 1 3 grpidcl RGrp0˙B
6 eqid +R=+R
7 1 6 3 grplid RGrp0˙B0˙+R0˙=0˙
8 4 5 7 syl2anc2 RRng0˙+R0˙=0˙
9 8 adantr RRngXB0˙+R0˙=0˙
10 9 oveq2d RRngXBX·˙0˙+R0˙=X·˙0˙
11 simpr RRngXBXB
12 1 3 rng0cl RRng0˙B
13 12 adantr RRngXB0˙B
14 11 13 13 3jca RRngXBXB0˙B0˙B
15 1 6 2 rngdi RRngXB0˙B0˙BX·˙0˙+R0˙=X·˙0˙+RX·˙0˙
16 14 15 syldan RRngXBX·˙0˙+R0˙=X·˙0˙+RX·˙0˙
17 4 adantr RRngXBRGrp
18 1 2 rngcl RRngXB0˙BX·˙0˙B
19 13 18 mpd3an3 RRngXBX·˙0˙B
20 1 6 3 grplid RGrpX·˙0˙B0˙+RX·˙0˙=X·˙0˙
21 20 eqcomd RGrpX·˙0˙BX·˙0˙=0˙+RX·˙0˙
22 17 19 21 syl2anc RRngXBX·˙0˙=0˙+RX·˙0˙
23 10 16 22 3eqtr3d RRngXBX·˙0˙+RX·˙0˙=0˙+RX·˙0˙
24 1 6 grprcan RGrpX·˙0˙B0˙BX·˙0˙BX·˙0˙+RX·˙0˙=0˙+RX·˙0˙X·˙0˙=0˙
25 17 19 13 19 24 syl13anc RRngXBX·˙0˙+RX·˙0˙=0˙+RX·˙0˙X·˙0˙=0˙
26 23 25 mpbid RRngXBX·˙0˙=0˙