Metamath Proof Explorer


Theorem rngcl

Description: Closure of the multiplication operation of a nonunital ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses rngcl.b B = Base R
rngcl.t · ˙ = R
Assertion rngcl R Rng X B Y B X · ˙ Y B

Proof

Step Hyp Ref Expression
1 rngcl.b B = Base R
2 rngcl.t · ˙ = R
3 eqid mulGrp R = mulGrp R
4 3 rngmgp Could not format ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
5 sgrpmgm Could not format ( ( mulGrp ` R ) e. Smgrp -> ( mulGrp ` R ) e. Mgm ) : No typesetting found for |- ( ( mulGrp ` R ) e. Smgrp -> ( mulGrp ` R ) e. Mgm ) with typecode |-
6 4 5 syl R Rng mulGrp R Mgm
7 3 1 mgpbas B = Base mulGrp R
8 3 2 mgpplusg · ˙ = + mulGrp R
9 7 8 mgmcl mulGrp R Mgm X B Y B X · ˙ Y B
10 6 9 syl3an1 R Rng X B Y B X · ˙ Y B