Metamath Proof Explorer


Theorem mgpbas

Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014) (Revised by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mgpbas.1 M=mulGrpR
mgpbas.2 B=BaseR
Assertion mgpbas B=BaseM

Proof

Step Hyp Ref Expression
1 mgpbas.1 M=mulGrpR
2 mgpbas.2 B=BaseR
3 eqid R=R
4 1 3 mgpval M=RsSet+ndxR
5 baseid Base=SlotBasendx
6 basendxnplusgndx Basendx+ndx
7 4 5 6 setsplusg BaseR=BaseM
8 2 7 eqtri B=BaseM