Metamath Proof Explorer


Theorem setsplusg

Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024)

Ref Expression
Hypotheses setsplusg.o O=RsSet+ndxS
setsplusg.e E=SlotEndx
setsplusg.i Endx+ndx
Assertion setsplusg ER=EO

Proof

Step Hyp Ref Expression
1 setsplusg.o O=RsSet+ndxS
2 setsplusg.e E=SlotEndx
3 setsplusg.i Endx+ndx
4 2 3 setsnid ER=ERsSet+ndxS
5 1 fveq2i EO=ERsSet+ndxS
6 4 5 eqtr4i ER=EO