Metamath Proof Explorer


Theorem setsplusg

Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024)

Ref Expression
Hypotheses setsplusg.o O = R sSet + ndx S
setsplusg.e E = Slot E ndx
setsplusg.i E ndx + ndx
Assertion setsplusg E R = E O

Proof

Step Hyp Ref Expression
1 setsplusg.o O = R sSet + ndx S
2 setsplusg.e E = Slot E ndx
3 setsplusg.i E ndx + ndx
4 2 3 setsnid E R = E R sSet + ndx S
5 1 fveq2i E O = E R sSet + ndx S
6 4 5 eqtr4i E R = E O