Metamath Proof Explorer


Theorem setsplusg

Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024)

Ref Expression
Hypotheses setsplusg.o
|- O = ( R sSet <. ( +g ` ndx ) , S >. )
setsplusg.e
|- E = Slot ( E ` ndx )
setsplusg.i
|- ( E ` ndx ) =/= ( +g ` ndx )
Assertion setsplusg
|- ( E ` R ) = ( E ` O )

Proof

Step Hyp Ref Expression
1 setsplusg.o
 |-  O = ( R sSet <. ( +g ` ndx ) , S >. )
2 setsplusg.e
 |-  E = Slot ( E ` ndx )
3 setsplusg.i
 |-  ( E ` ndx ) =/= ( +g ` ndx )
4 2 3 setsnid
 |-  ( E ` R ) = ( E ` ( R sSet <. ( +g ` ndx ) , S >. ) )
5 1 fveq2i
 |-  ( E ` O ) = ( E ` ( R sSet <. ( +g ` ndx ) , S >. ) )
6 4 5 eqtr4i
 |-  ( E ` R ) = ( E ` O )