Metamath Proof Explorer


Theorem setsplusg

Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024)

Ref Expression
Hypotheses setsplusg.o 𝑂 = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , 𝑆 ⟩ )
setsplusg.e 𝐸 = Slot ( 𝐸 ‘ ndx )
setsplusg.i ( 𝐸 ‘ ndx ) ≠ ( +g ‘ ndx )
Assertion setsplusg ( 𝐸𝑅 ) = ( 𝐸𝑂 )

Proof

Step Hyp Ref Expression
1 setsplusg.o 𝑂 = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , 𝑆 ⟩ )
2 setsplusg.e 𝐸 = Slot ( 𝐸 ‘ ndx )
3 setsplusg.i ( 𝐸 ‘ ndx ) ≠ ( +g ‘ ndx )
4 2 3 setsnid ( 𝐸𝑅 ) = ( 𝐸 ‘ ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , 𝑆 ⟩ ) )
5 1 fveq2i ( 𝐸𝑂 ) = ( 𝐸 ‘ ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , 𝑆 ⟩ ) )
6 4 5 eqtr4i ( 𝐸𝑅 ) = ( 𝐸𝑂 )