Metamath Proof Explorer


Theorem oppglemOLD

Description: Obsolete version of setsplusg as of 18-Oct-2024. Lemma for oppgbas . (Contributed by Stefan O'Rear, 26-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses oppgbas.1 𝑂 = ( oppg𝑅 )
oppglemOLD.2 𝐸 = Slot 𝑁
oppglemOLD.3 𝑁 ∈ ℕ
oppglemOLD.4 𝑁 ≠ 2
Assertion oppglemOLD ( 𝐸𝑅 ) = ( 𝐸𝑂 )

Proof

Step Hyp Ref Expression
1 oppgbas.1 𝑂 = ( oppg𝑅 )
2 oppglemOLD.2 𝐸 = Slot 𝑁
3 oppglemOLD.3 𝑁 ∈ ℕ
4 oppglemOLD.4 𝑁 ≠ 2
5 2 3 ndxid 𝐸 = Slot ( 𝐸 ‘ ndx )
6 2 3 ndxarg ( 𝐸 ‘ ndx ) = 𝑁
7 plusgndx ( +g ‘ ndx ) = 2
8 6 7 neeq12i ( ( 𝐸 ‘ ndx ) ≠ ( +g ‘ ndx ) ↔ 𝑁 ≠ 2 )
9 4 8 mpbir ( 𝐸 ‘ ndx ) ≠ ( +g ‘ ndx )
10 5 9 setsnid ( 𝐸𝑅 ) = ( 𝐸 ‘ ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , tpos ( +g𝑅 ) ⟩ ) )
11 eqid ( +g𝑅 ) = ( +g𝑅 )
12 11 1 oppgval 𝑂 = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , tpos ( +g𝑅 ) ⟩ )
13 12 fveq2i ( 𝐸𝑂 ) = ( 𝐸 ‘ ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , tpos ( +g𝑅 ) ⟩ ) )
14 10 13 eqtr4i ( 𝐸𝑅 ) = ( 𝐸𝑂 )